本文整理汇总了Python中stats.std函数的典型用法代码示例。如果您正苦于以下问题:Python std函数的具体用法?Python std怎么用?Python std使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了std函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: log
def log(self):
mean_download_rate = stats.avg(self.download_rates)
std_download_rate = stats.std(self.download_rates)
mean_upload_rate = stats.avg(self.upload_rates)
std_upload_rate = stats.std(self.upload_rates)
logger.log("--*--Torrent statistics--*--")
logger.log("Download rate (KiB/s) - mean: %f" % mean_download_rate)
logger.log("Download rate (KiB/s) - standard deviation: %f" % std_download_rate)
logger.log("Upload rate (KiB/s) - mean: %f" % mean_upload_rate)
logger.log("Upload rate (KiB/s) - standard deviation: %f" % std_upload_rate)
logger.log_to_file("download_rate_mean, %f\r\n" % mean_download_rate)
logger.log_to_file("download_rate_stdev, %f\r\n" % std_download_rate)
logger.log_to_file("upload_rate_mean, %f\r\n" % mean_upload_rate)
logger.log_to_file("upload_rate_stdev, %f\r\n" % std_upload_rate)
if self.download_finished:
logger.log("Download time (s): %d" % self.download_time)
logger.log_to_file("download_time, %d\r\n" % self.download_time)
else:
logger.log_to_file("download_time, %d\r\n" % -1)
self.buffer_manager.log()
示例2: check_2d
def check_2d(self):
a = [[1.0, 2.0, 3.0],
[2.0, 4.0, 6.0],
[8.0, 12.0, 7.0]]
b1 = array((3.7859388972001824, 5.2915026221291814,
2.0816659994661335))
b2 = array((1.0,2.0,2.64575131106))
assert_array_almost_equal(stats.std(a),b1,11)
assert_array_almost_equal(stats.std(a,axis=0),b1,11)
assert_array_almost_equal(stats.std(a,axis=1),b2,11)
示例3: print_stats
def print_stats(L):
""" Display some information about the lists """
print "Let's compute some statistics..."
print "\tMean: %d" % mean(L)
print "\tStandard deviation: %d" % std(L)
print "\t# of outliers: %d" % (len(L) - len(remove_outliers(L,1)))
示例4: log
def log(self):
interruptions = len(self.buffering_time) - 1
# Checking if player is on initial buffering state
if interruptions > 0 or not self.is_buffering:
initial_wait = self.buffering_time[0]
else:
initial_wait = -1
# Removing invalid samples
buffering_time = self.buffering_time[1:]
if self.is_buffering:
buffering_time = buffering_time[:-1]
# Calculating statistics
mean_time = stats.avg(buffering_time)
std_time = stats.std(buffering_time)
# Logging
logger.log("--*--Buffer statistics--*--")
logger.log("Time to start playback (s): %d" % initial_wait)
logger.log("Number of interruptions: %d" % interruptions)
logger.log("Interruption time (s) - mean: %f" % mean_time)
logger.log("Interruption time (s) - standard deviation: %f" % std_time)
logger.log("Interruptions (s): %r" % buffering_time)
logger.log_to_file("playback_start_time, %d\r\n" % initial_wait)
logger.log_to_file("interruptions, %d\r\n" % interruptions)
logger.log_to_file("interruption_time_mean, %f\r\n" % mean_time)
logger.log_to_file("interruption_time_stdev, %f\r\n" % std_time)
示例5: test_std5
def test_std5():
obs = std([1.0, 1.0, 1.0])
exp = 0.0
assert_equal(obs,exp)
#test_mean()
#test_float_mean()
#test_negative_mean()
示例6: test_std7
def test_std7():
obs = std([0.0, 1e4242])
exp = NotImplemented
assert_equal(obs, exp)
示例7: test_std5
def test_std5():
obs = std([1.0, 1.0, 1.0])
exp = 0.0
assert_equal(obs, exp)
示例8: test_std6
def test_std6():
obs = std([1e500])
exp = NotImplemented
assert_equal(obs, exp)
示例9: test_std3
def test_std3():
obs = std([0.0, 4.0])
exp = 2.0
assert_equal(obs, exp)
示例10: test_std4
def test_std4():
obs = std([1.0, 3.0])
exp = 1.0
assert_equal(obs, exp)
示例11: test_std1
def test_std1():
obs = std([0.0, 2.0])
exp = 1.0
assert_equal(obs, exp)
示例12: test_std2
def test_std2():
obs = std([])
exp = 0.0
assert_equal(obs, exp)
示例13: anderson
def anderson(x,dist='norm'):
"""Anderson and Darling test for normal, exponential, or Gumbel
(Extreme Value Type I) distribution.
Given samples x, return A2, the Anderson-Darling statistic,
the significance levels in percentages, and the corresponding
critical values.
Critical values provided are for the following significance levels
norm/expon: 15%, 10%, 5%, 2.5%, 1%
Gumbel: 25%, 10%, 5%, 2.5%, 1%
logistic: 25%, 10%, 5%, 2.5%, 1%, 0.5%
If A2 is larger than these critical values then for that significance
level, the hypothesis that the data come from a normal (exponential)
can be rejected.
"""
if not dist in ['norm','expon','gumbel','extreme1','logistic']:
raise ValueError, "Invalid distribution."
y = sort(x)
xbar = stats.mean(x)
N = len(y)
if dist == 'norm':
s = stats.std(x)
w = (y-xbar)/s
z = distributions.norm.cdf(w)
sig = array([15,10,5,2.5,1])
critical = around(_Avals_norm / (1.0 + 4.0/N - 25.0/N/N),3)
elif dist == 'expon':
w = y / xbar
z = distributions.expon.cdf(w)
sig = array([15,10,5,2.5,1])
critical = around(_Avals_expon / (1.0 + 0.6/N),3)
elif dist == 'logistic':
def rootfunc(ab,xj,N):
a,b = ab
tmp = (xj-a)/b
tmp2 = exp(tmp)
val = [sum(1.0/(1+tmp2),axis=0)-0.5*N,
sum(tmp*(1.0-tmp2)/(1+tmp2),axis=0)+N]
return array(val)
sol0=array([xbar,stats.std(x)])
sol = optimize.fsolve(rootfunc,sol0,args=(x,N),xtol=1e-5)
w = (y-sol[0])/sol[1]
z = distributions.logistic.cdf(w)
sig = array([25,10,5,2.5,1,0.5])
critical = around(_Avals_logistic / (1.0+0.25/N),3)
else:
def fixedsolve(th,xj,N):
val = stats.sum(xj)*1.0/N
tmp = exp(-xj/th)
term = sum(xj*tmp,axis=0)
term /= sum(tmp,axis=0)
return val - term
s = optimize.fixed_point(fixedsolve, 1.0, args=(x,N),xtol=1e-5)
xbar = -s*log(sum(exp(-x/s),axis=0)*1.0/N)
w = (y-xbar)/s
z = distributions.gumbel_l.cdf(w)
sig = array([25,10,5,2.5,1])
critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)),3)
i = arange(1,N+1)
S = sum((2*i-1.0)/N*(log(z)+log(1-z[::-1])),axis=0)
A2 = -N-S
return A2, critical, sig
示例14: test_std4
def test_std4():
obs = std([1.0, 3.0])
exp = 1.0
示例15: test_std42
def test_std42():
obs = std([1, 3, -5, 3, -10])
assert_greater(obs,0)