本文整理汇总了Python中stats.mean函数的典型用法代码示例。如果您正苦于以下问题:Python mean函数的具体用法?Python mean怎么用?Python mean使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了mean函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: compute_stats
def compute_stats(te_diffs, gene_diffs, plot_dir):
pvals = []
table_lines = []
for te_or in te_diffs:
rep, fam, orient = te_or
for sample_key in te_diffs[te_or]:
sample1, sample2 = sample_key
# if enough data
if len(te_diffs[te_or][sample_key]) >= 10:
wo_te = list((gene_diffs[sample_key] - te_diffs[te_or][sample_key]).elements())
w_te = list(te_diffs[te_or][sample_key].elements())
wo_mean = stats.mean(wo_te)
w_mean = stats.mean(w_te)
z, p = stats.mannwhitneyu(w_te, wo_te)
cols = (rep, fam, orient, sample1, sample2, len(w_te), w_mean, wo_mean, z, p)
table_lines.append('%-17s %-17s %1s %-10s %-10s %6d %9.2f %9.2f %8.2f %10.2e' % cols)
pvals.append(p)
# plot ...
if rep in ['*'] and fam in ['*','LINE/L1','SINE/Alu','LTR/ERV1','LTR/ERVL-MaLR','LINE/L2','LTR/ERVL','SINE/MIR','DNA/hAT-Charlie','LTR/ERVK','DNA/TcMar-Tigger']:
out_pdf = '%s/%s_%s_%s_%s-%s.pdf' % (plot_dir,rep.replace('/','-'),fam.replace('/','-'),orient,sample1,sample2)
cdf_plot(te_or, w_te, wo_te, out_pdf)
return table_lines, pvals
示例2: testMean
def testMean(self):
"""
Check that mean works as expected.
"""
self.assertAlmostEqual(stats.mean(self.dataA), self.meanA, 5)
self.assertAlmostEqual(stats.mean(self.dataB), self.meanB, 5)
return
示例3: least_squares_fit
def least_squares_fit(x, y):
"""given training values for x and y,
find the least-squares values of alpha and beta"""
beta = stats.correlation(x, y) * \
stats.standard_deviation(y) / stats.standard_deviation(x)
alpha = stats.mean(y) - beta * stats.mean(x)
return alpha, beta
示例4: sync_check
def sync_check():
# print 'Checking sync...'
max_mcnt_difference=4
mcnts=dict()
mcnts_list=[]
mcnt_tot=0
for f,fpga in enumerate(fpgas):
mcnts[f]=dict()
try:
hdr_index=bram_oob[f]['hdr'].index(1)
except:
print 'ERR: No headers found in BRAM. Are the F engines properly connected?'
exit()
pkt_64bit = struct.unpack('>Q',bram_dmp['bram_msb'][f]['data'][(4*hdr_index):(4*hdr_index)+4]+bram_dmp['bram_lsb'][f]['data'][(4*hdr_index):(4*hdr_index)+4])[0]
mcnts[f]['mcnt'] =(pkt_64bit&((2**64)-(2**16)))>>16
mcnts_list.append(mcnts[f]['mcnt'])
# print '[%s] MCNT: %i'%(servers[f],mcnts[f]['mcnt'])
mcnts['mean']=stats.mean(mcnts_list)
mcnts['median']=stats.median(mcnts_list)
mcnts['mode']=stats.mode(mcnts_list)
mcnts['modalmean']=stats.mean(mcnts['mode'][1])
# print 'mean: %i, median: %i, modal mean: %i mode:'%(mcnts['mean'],mcnts['median'],mcnts['modalmean']),mcnts['mode']
for f,fpga in enumerate(fpgas):
if mcnts[f]['mcnt']>(mcnts['modalmean']+max_mcnt_difference) or mcnts[f]['mcnt'] < (mcnts['modalmean']-max_mcnt_difference):
print '%s OUT OF SYNC!!'%servers[f]
mcnts[f]['sync_status']='FAIL with error of %i'%(mcnts[f]['mcnt']-mcnts['modalmean'])
else:
mcnts[f]['sync_status']='PASS'
return mcnts
示例5: statsex
def statsex(self, objects):
"""
Do some statistics on a source list
Return dictionary
"""
import stats, pstat
# Return if we have no objects
if len(objects) == 0:
return 0
# Define dictionary to hold statistics
stat = {}
# Get number of objects
stat['N'] = str(len(objects))
# Define list (float) of FWHM values
fwhm = [ float(obj[7]) for obj in objects ]
# Define list (float) of ELLIPTICITY values
el = [ float(obj[6]) for obj in objects ]
# Define list (float) of THETA_IMAGE values
pa = [ float(obj[5]) for obj in objects ]
# Define list (float) of 'Stella-like' values
stella = [ float(obj[9]) for obj in objects ]
# Create a histogram of FWHM values of binsize 1 pixel
hfwhm = stats.histogram(fwhm,40,[0,40])[0]
stat['medianFWHM'] = "%.2f" % stats.median(fwhm)
stat['meanFWHM'] = "%.2f" % stats.mean(fwhm)
stat['modeFWHM'] = "%.2f" % float(hfwhm.index(max(hfwhm))+0.5)
try:
stat['stdevFWHM'] = "%.2f" % stats.stdev(fwhm)
except ZeroDivisionError:
stat['stdevFWHM'] = '0.00';
stat['medianEL'] = "%.2f" % stats.median(el)
stat['meanEL'] = "%.2f" % stats.mean(el)
try:
stat['stdevEL'] = "%.2f" % stats.stdev(el)
except ZeroDivisionError:
stat['stdevEL'] = '0.00'
# Histogram of Ellipticity PA (-180 to 180, bins of 45 deg)
#stat['histoTHETA'] = stats.histogram(pa,8,[-180,180])[0]
# Histogram of Stellarity (0 to 1, bins of 0.05)
#stat['histoStella'] = stats.histogram(stella,20,[0,1.01])[0]
return stat
示例6: testOnTuples
def testOnTuples(self):
"""
Checks that methods also work on tuples.
"""
self.assertAlmostEqual(stats.mean(tuple(self.dataA)), self.meanA, 5)
self.assertAlmostEqual(stats.mean(tuple(self.dataB)), self.meanB, 5)
self.assertAlmostEqual(stats.stddev(tuple(self.dataA)), self.stddevA, 5)
self.assertAlmostEqual(stats.stddev(tuple(self.dataB)), self.stddevB, 5)
return
示例7: corr
def corr(xdata, ydata):
"""corr(xydata) -> float
corr(xdata, ydata) -> float
Return the sample Pearson's Correlation Coefficient of (x,y) data.
If ydata is None or not given, then xdata must be an iterable of (x, y)
pairs. Otherwise, both xdata and ydata must be iterables of values, which
will be truncated to the shorter of the two.
>>> corr([(0.1, 2.3), (0.5, 2.7), (1.2, 3.1), (1.7, 2.9)])
... #doctest: +ELLIPSIS
0.827429009335...
The Pearson correlation is +1 in the case of a perfect positive
correlation (i.e. an increasing linear relationship), -1 in the case of
a perfect anti-correlation (i.e. a decreasing linear relationship), and
some value between -1 and 1 in all other cases, indicating the degree
of linear dependence between the variables.
>>> xdata = [1, 2, 3, 4, 5, 6]
>>> ydata = [2*x for x in xdata] # Perfect correlation.
>>> corr(xdata, ydata)
1.0
>>> corr(xdata, [5-y for y in ydata]) # Perfect anti-correlation.
-1.0
If there are not at least two data points, or if either all the x values
or all the y values are equal, StatsError is raised.
"""
n = len(xdata)
assert n == len(ydata)
if n < 2:
raise StatsError(
'correlation requires at least two data points, got %d' % n)
# First pass is to determine the means.
mx = stats.mean(xdata)
my = stats.mean(ydata)
# Second pass to determine the standard deviations.
sx = stats.stdev(xdata, mx)
sy = stats.stdev(ydata, my)
if sx == 0:
raise StatsError('all x values are equal')
if sy == 0:
raise StatsError('all y values are equal')
# Third pass to calculate the correlation coefficient.
ap = add_partial
total = []
for x, y in zip(xdata, ydata):
term = ((x-mx)/sx) * ((y-my)/sy)
ap(term, total)
r = math.fsum(total)/(n-1)
assert -1 <= r <= r
return r
示例8: get_modules
def get_modules(self, cutoff=.05):
modules = []
for e in self:
if e.val < min(e.lo_min, e.hi_min, cutoff):
if self.datatype=="continuous":
e.desc = "lo" if mean(e.a) < mean(e.b) else "hi"
else:
e.desc = "enriched"
modules.append(e)
else:
modules += e.get_modules(cutoff=cutoff)
return modules
示例9: check_basic
def check_basic(self):
a = [3,4,5,10,-3,-5,6]
af = [3.,4,5,10,-3,-5,-6]
Na = len(a)
Naf = len(af)
mn1 = 0.0
for el in a:
mn1 += el / float(Na)
assert_almost_equal(stats.mean(a),mn1,11)
mn2 = 0.0
for el in af:
mn2 += el / float(Naf)
assert_almost_equal(stats.mean(af),mn2,11)
示例10: _SP
def _SP(xdata, mx, ydata, my):
"""SP = sum of product of deviations.
Helper function for calculating covariance directly.
"""
if mx is None:
# Two pass algorithm.
xdata = as_sequence(xdata)
mx = stats.mean(xdata)
if my is None:
# Two pass algorithm.
ydata = as_sequence(ydata)
my = stats.mean(ydata)
return _generalised_sum(zip(xdata, ydata), lambda t: (t[0]-mx)*(t[1]-my))
示例11: check_2d
def check_2d(self):
a = [[1.0, 2.0, 3.0],
[2.0, 4.0, 6.0],
[8.0, 12.0, 7.0]]
A = array(a,'d')
N1,N2 = (3,3)
mn1 = zeros(N2,'d')
for k in range(N1):
mn1 += A[k,:] / N1
allclose(stats.mean(a),mn1,rtol=1e-13,atol=1e-13)
mn2 = zeros(N1,'d')
for k in range(N2):
mn2 += A[:,k] / N2
allclose(stats.mean(a,axis=0),mn2,rtol=1e-13,atol=1e-13)
示例12: calculateDividingLine
def calculateDividingLine(gestures, maybeGestures, nonGestures):
numFolds = min(TESTING_FOLDS, len(gestures))
allGestureDistances = []
allNonGestureDistances = []
for foldNum in range(numFolds):
trainingGestures = [gesture for i, gesture in enumerate(gestures) if i % numFolds != foldNum]
testingGestures = [localTimeGestures for i, localTimeGestures in enumerate(maybeGestures) if i % numFolds == foldNum]
#print 'train, test #s: ', len(trainingGestures), len(testingGestures)
#make a distance calculator based on the subset of hte training data
distanceCalculator = gestureDistanceCalculator.GestureDistanceCalculator(trainingGestures)
#each localTimeGestures is a list of the closest times to when a gesture was identified in training
#since the output can be triggered at slightly different times, we should look for a minimum near where
#the gesture is known to have happened, compared to the training gestures
gestureDistances = []
#print testingGestures
for localTimeGestureSet in testingGestures:
closestDistance = min(map(distanceCalculator.getDistance, localTimeGestureSet))
gestureDistances.append(closestDistance)
#gestureDistances = map(distanceCalculator.getDistance, testingGestures)
#print gestureDistances
nonGestureDistances = map(distanceCalculator.getDistance, nonGestures)
#print gestureDistances
allGestureDistances += gestureDistances
allNonGestureDistances += nonGestureDistances
#break
#print len(allGestureDistances), len(allNonGestureDistances)
print 'means: ', stats.mean(allGestureDistances), stats.mean(allNonGestureDistances)
print 'std devs: ', stats.stdDev(allGestureDistances), stats.stdDev(allNonGestureDistances)
meanGesture = stats.mean(allGestureDistances)
meanNon = stats.mean(allNonGestureDistances)
devGesture = stats.stdDev(allGestureDistances)
devNon = stats.stdDev(allNonGestureDistances)
line = (meanGesture * devNon + meanNon * devGesture) / ( devGesture + devNon)
#print line
return line
示例13: diff_fpkm
def diff_fpkm(diff_file, pseudocount):
gene_fpkms = {}
diff_in = open(diff_file)
diff_in.readline()
for line in diff_in:
a = line.split('\t')
gene_id = a[0]
sample1 = a[4]
sample2 = a[5]
status = a[6]
fpkm1 = float(a[7])
fpkm2 = float(a[8])
if status == 'OK':
if gene_id in gene_fpkms:
gene_fpkms[gene_id] += [fpkm1, fpkm2]
else:
gene_fpkms[gene_id] = [fpkm1, fpkm2]
diff_in.close()
gene_fpkm = {}
for gene_id in gene_fpkms:
log_fpkms = [math.log(fpkm+pseudocount,2) for fpkm in gene_fpkms[gene_id]]
gene_fpkm[gene_id] = stats.mean(log_fpkms)
return gene_fpkm
示例14: wordSummary
def wordSummary(db, table):
f = open("wordSummary_%s.txt" % table, 'w')
d = {}
header = "word, length, rtAVG, rtSTD, total, percCorrect\n"
f.write(header)
wordList = []
sql = "SELECT DISTINCT(word) FROM %s" % table
for w in db.query(sql):
wordList.append(w[0])
for word in wordList:
sql = "SELECT RT FROM %s WHERE word = '%s' AND incorrect = 0" % (table, word)
wordLen = len(word)
rtList = []
zList = []
for rt in db.query(sql):
rtList.append(rt[0])
rtAVG = stats.mean(rtList)
rtSTD = stats.samplestdev(rtList)
total = db.query("SELECT COUNT(*) FROM %s WHERE word = '%s'" % (table, word))[0][0]
percCorrect = float(len(rtList)) / float(total) * 100.0
print len(rtList), total
myString = "%s, %i, %f, %f, %i, %f\n" % (word, wordLen, rtAVG, rtSTD, total, percCorrect)
print myString
f.write(myString)
f.close()
示例15: main
def main():
[(stat, first), (stat, second)] = load_stats(sys.argv[1:])
# Attempt to increase robustness by dropping the outlying 10% of values.
first = trim(first, 0.1)
second = trim(second, 0.1)
fmean = stats.mean(first)
smean = stats.mean(second)
p = 1 - ttest_1samp(second, fmean)[1][0]
if p >= 0.95:
# rejected the null hypothesis
print sys.argv[1], 'mean of', fmean, 'differs from', sys.argv[2], 'mean of', smean, '(%2.0f%%)' % (p * 100,)
else:
# failed to reject the null hypothesis
print 'cannot prove means (%s, %s) differ (%2.0f%%)' % (fmean, smean, p * 100,)