本文整理汇总了Python中spynnaker.pyNN.end函数的典型用法代码示例。如果您正苦于以下问题:Python end函数的具体用法?Python end怎么用?Python end使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了end函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_script
def test_script(self):
"""
test that tests the printing of v from a pre determined recording
:return:
"""
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 128 * 128 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_cond_exp", 256)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0,
'e_rev_E': 0.,
'e_rev_I': -80.
}
populations = list()
projections = list()
weight_to_spike = 0.035
delay = 17
spikes = read_spikefile('test.spikes', n_neurons)
print spikes
spike_array = {'spike_times': spikes}
populations.append(p.Population(
n_neurons, p.SpikeSourceArray, spike_array, label='inputSpikes_1'))
populations.append(p.Population(
n_neurons, p.IF_cond_exp, cell_params_lif, label='pop_1'))
projections.append(p.Projection(
populations[0], populations[1], p.OneToOneConnector(
weights=weight_to_spike, delays=delay)))
populations[1].record()
p.run(1000)
spikes = populations[1].getSpikes(compatible_output=True)
if spikes is not None:
print spikes
pylab.figure()
pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], ".")
pylab.xlabel('Time/ms')
pylab.ylabel('spikes')
pylab.title('spikes')
pylab.show()
else:
print "No spikes received"
p.end()
示例2: test_recording_numerious_element_over_limit
def test_recording_numerious_element_over_limit(self):
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 2000 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
boxed_array = numpy.zeros(shape=(0, 2))
spike_array = list()
for neuron_id in range(0, n_neurons):
spike_array.append(list())
for random_time in range(0, 200000):
random_time2 = random.randint(0, 50000)
boxed_array = numpy.append(
boxed_array, [[neuron_id, random_time2]], axis=0)
spike_array[neuron_id].append(random_time)
spike_array_params = {'spike_times': spike_array}
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(n_neurons, p.SpikeSourceArray,
spike_array_params,
label='inputSpikes_1'))
projections.append(p.Projection(populations[1], populations[0],
p.OneToOneConnector()))
populations[1].record()
p.run(50000)
spike_array_spikes = populations[1].getSpikes()
boxed_array = boxed_array[numpy.lexsort((boxed_array[:, 1],
boxed_array[:, 0]))]
numpy.testing.assert_array_equal(spike_array_spikes, boxed_array)
p.end()
示例3: test_get_weights
def test_get_weights(self):
# Population parameters
cell_params = {
'cm': 0.2, # nF
'i_offset': 0.2,
'tau_m': 20.0,
'tau_refrac': 5.0,
'tau_syn_E': 5.0,
'tau_syn_I': 10.0,
'v_reset': -60.0,
'v_rest': -60.0,
'v_thresh': -50.0
}
# Reduce number of neurons to simulate on each core
sim.set_number_of_neurons_per_core(sim.IF_curr_exp, 100)
# Build inhibitory plasticity model
stdp_model = sim.STDPMechanism(
timing_dependence=sim.SpikePairRule(
tau_plus=20.0, tau_minus=12.7, nearest=True),
weight_dependence=sim.AdditiveWeightDependence(
w_min=0.0, w_max=1.0, A_plus=0.05),
mad=True
)
# Build plastic network
plastic_ex_pop, plastic_ie_projection =\
self.build_network(sim.SynapseDynamics(slow=stdp_model),
cell_params)
# Run simulation
sim.run(10000)
# Get plastic spikes and save to disk
plastic_spikes = plastic_ex_pop.getSpikes(compatible_output=True)
#numpy.save("plastic_spikes.npy", plastic_spikes)
plastic_weights = plastic_ie_projection.getWeights(format="array")
# mean_weight = numpy.average(plastic_weights)
# End simulation on SpiNNaker
sim.end()
示例4: main
def main():
# setup timestep of simulation and minimum and maximum synaptic delays
Frontend.setup(timestep=simulationTimestep, min_delay=minSynapseDelay, max_delay=maxSynapseDelay, threads=4)
# create a spike sources
retinaLeft = createSpikeSource("RetL")
retinaRight = createSpikeSource("RetR")
# create network and attach the spike sources
network, (liveConnectionNetwork, liveConnectionRetinas) = createCooperativeNetwork(retinaLeft=retinaLeft, retinaRight=retinaRight)
# non-blocking run for time in milliseconds
print "Simulation started..."
Frontend.run(simulationTime)
print "Simulation ended."
# plot results
#
# plotExperiment(retinaLeft, retinaRight, network)
# finalise program and simulation
Frontend.end()
示例5: test_recording_1_element
def test_recording_1_element(self):
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 200 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
spike_array = {'spike_times': [[0]]}
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(1, p.SpikeSourceArray, spike_array,
label='inputSpikes_1'))
projections.append(p.Projection(populations[0], populations[0],
p.OneToOneConnector()))
populations[1].record()
p.run(5000)
spike_array_spikes = populations[1].getSpikes()
boxed_array = numpy.zeros(shape=(0, 2))
boxed_array = numpy.append(boxed_array, [[0, 0]], axis=0)
numpy.testing.assert_array_equal(spike_array_spikes, boxed_array)
p.end()
示例6: simulate
def simulate(self, spinnaker, input_spike_times):
# Cell parameters
cell_params = {
'tau_m': 20.0,
'v_rest': -60.0,
'v_reset': -60.0,
'v_thresh': -40.0,
'tau_syn_E': 2.0,
'tau_syn_I': 2.0,
'tau_refrac': 2.0,
'cm': 0.25,
'i_offset': 0.0,
}
rng = p.NumpyRNG(seed=28375)
v_init = p.RandomDistribution('uniform', [-60, -40], rng)
p.setup(timestep=1.0, min_delay=1.0, max_delay=10.0)
pop = p.Population(1, p.IF_curr_exp, cell_params, label='population')
pop.randomInit(v_init)
pop.record()
pop.record_v()
noise = p.Population(1, p.SpikeSourceArray,
{"spike_times": input_spike_times})
p.Projection(noise, pop, p.OneToOneConnector(weights=0.4, delays=1),
target='excitatory')
# Simulate
p.run(self.simtime)
pop_voltages = pop.get_v(compatible_output=True)
pop_spikes = pop.getSpikes(compatible_output=True)
p.end()
return pop_voltages, pop_spikes
示例7: test_recording_poisson_spikes_rate_0
def test_recording_poisson_spikes_rate_0(self):
p.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
n_neurons = 256 # number of neurons in each population
p.set_number_of_neurons_per_core("IF_curr_exp", n_neurons / 2)
cell_params_lif = {'cm': 0.25,
'i_offset': 0.0,
'tau_m': 20.0,
'tau_refrac': 2.0,
'tau_syn_E': 5.0,
'tau_syn_I': 5.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0
}
populations = list()
projections = list()
populations.append(p.Population(n_neurons, p.IF_curr_exp,
cell_params_lif,
label='pop_1'))
populations.append(p.Population(n_neurons, p.SpikeSourcePoisson,
{'rate': 0},
label='inputSpikes_1'))
projections.append(p.Projection(populations[1], populations[0],
p.OneToOneConnector()))
populations[1].record()
p.run(5000)
spikes = populations[1].getSpikes()
print spikes
p.end()
示例8: SpynnakerLiveSpikesConnection
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=None, local_port=19999, send_labels=["spike_injector_forward"])
# Set up callbacks to occur at the start of simulation
live_spikes_connection.add_start_callback("spike_injector_forward", send_input_forward)
# if not using the c visualiser, then a new spynnaker live spikes connection
# is created to define that there are python code which receives the
# outputted spikes.
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=["pop_forward"], local_port=19996, send_labels=None)
# Set up callbacks to occur when spikes are received
live_spikes_connection.add_receive_callback("pop_forward", receive_spikes)
# Run the simulation on spiNNaker
Frontend.run(run_time)
# Retrieve spikes from the synfire chain population
spikes_forward = pop_forward.getSpikes()
# If there are spikes, plot using matplotlib
if len(spikes_forward) != 0:
pylab.figure()
if len(spikes_forward) != 0:
pylab.plot([i[1] for i in spikes_forward],
[i[0] for i in spikes_forward], "b.")
pylab.ylabel('neuron id')
pylab.xlabel('Time/ms')
pylab.title('spikes')
pylab.show()
else:
print "No spikes received"
# Clear data structures on spiNNaker to leave the machine in a clean state for
# future executions
Frontend.end()
示例9: len
else:
print "No spikes received"
# Make some graphs
if v != None:
ticks = len(v) / nNeurons
pylab.figure()
pylab.xlabel('Time/ms')
pylab.ylabel('v')
pylab.title('v')
for pos in range(0, nNeurons, 20):
v_for_neuron = v[pos * ticks : (pos + 1) * ticks]
pylab.plot([i[1] for i in v_for_neuron],
[i[2] for i in v_for_neuron])
pylab.show()
if gsyn != None:
ticks = len(gsyn) / nNeurons
pylab.figure()
pylab.xlabel('Time/ms')
pylab.ylabel('gsyn')
pylab.title('gsyn')
for pos in range(0, nNeurons, 20):
gsyn_for_neuron = gsyn[pos * ticks : (pos + 1) * ticks]
pylab.plot([i[1] for i in gsyn_for_neuron],
[i[2] for i in gsyn_for_neuron])
pylab.show()
p.end(stop_on_board=False)
示例10:
import spynnaker.pyNN as sim
sim.setup(timestep=1.0, min_delay=1.0, max_delay=1.0)
simtime = 1000
pg_pop1 = sim.Population(2, sim.SpikeSourcePoisson,
{'rate': 10.0, 'start':0,
'duration':simtime}, label="pg_pop1")
pg_pop2 = sim.Population(2, sim.SpikeSourcePoisson,
{'rate': 10.0, 'start':0,
'duration':simtime}, label="pg_pop2")
pg_pop1.record()
pg_pop2.record()
sim.run(simtime)
spikes1 = pg_pop1.getSpikes(compatible_output=True)
spikes2 = pg_pop2.getSpikes(compatible_output=True)
print spikes1
print spikes2
sim.end()
示例11: run
def run():
Frontend.run(run_time)
Frontend.end()
示例12: len
pylab.title('spikes')
pylab.show()
else:
print "No spikes received"
# Make some graphs
if v is not None:
ticks = len(v) / nNeurons
pylab.figure()
pylab.xlabel('Time/ms')
pylab.ylabel('v')
pylab.title('v')
for pos in range(0, nNeurons, 20):
v_for_neuron = v[pos * ticks: (pos + 1) * ticks]
pylab.plot([i[2] for i in v_for_neuron])
pylab.show()
if gsyn is not None:
ticks = len(gsyn) / nNeurons
pylab.figure()
pylab.xlabel('Time/ms')
pylab.ylabel('gsyn')
pylab.title('gsyn')
for pos in range(0, nNeurons, 20):
gsyn_for_neuron = gsyn[pos * ticks: (pos + 1) * ticks]
pylab.plot([i[2] for i in gsyn_for_neuron])
pylab.show()
p.end()
示例13: list
ExternalDevices.activate_live_output_for(populations[0])
projections.append(
FrontEnd.Projection(populations[1], populations[0], FrontEnd.OneToOneConnector(weights=weight_to_spike))
)
loopConnections = list()
for i in range(0, nNeurons - 1):
singleConnection = (i, ((i + 1) % nNeurons), weight_to_spike, 3)
loopConnections.append(singleConnection)
projections.append(FrontEnd.Projection(populations[0], populations[0], FrontEnd.FromListConnector(loopConnections)))
FrontEnd.run(run_time)
spikes = populations[0].getSpikes(compatible_output=True)
if spikes is not None:
print spikes
pylab.figure()
pylab.plot([i[1] for i in spikes], [i[0] for i in spikes], ".")
pylab.ylabel("neuron id")
pylab.xlabel("Time/ms")
pylab.title("spikes")
pylab.show()
else:
print "No spikes received"
FrontEnd.end()
示例14: main
def main():
minutes = 0
seconds = 30
milliseconds = 0
run_time = minutes*60*1000 + seconds*1000 + milliseconds
weight_to_spike = 4.
model = sim.IF_curr_exp
cell_params = {'cm' : 0.25, # nF
'i_offset' : 0.0,
'tau_m' : 10.0,
'tau_refrac': 2.0,
'tau_syn_E' : 2.5,
'tau_syn_I' : 2.5,
'v_reset' : -70.0,
'v_rest' : -65.0,
'v_thresh' : -55.4
}
# Available resolutions
# 16, 32, 64, 128
mode = ExternalDvsEmulatorDevice.MODE_64
cam_res = int(mode)
cam_fps = 90
frames_per_saccade = cam_fps/3 - 1
polarity = ExternalDvsEmulatorDevice.MERGED_POLARITY
output_type = ExternalDvsEmulatorDevice.OUTPUT_TIME
history_weight = 1.0
behaviour = VirtualCam.BEHAVE_ATTENTION
vcam = VirtualCam("./mnist", behaviour=behaviour, fps=cam_fps,
resolution=cam_res, frames_per_saccade=frames_per_saccade)
cam_params = {'mode': mode,
'polarity': polarity,
'threshold': 12,
'adaptive_threshold': False,
'fps': cam_fps,
'inhibition': False,
'output_type': output_type,
'save_spikes': "./spikes_from_cam.pickle",
'history_weight': history_weight,
#'device_id': 0, # for an OpenCV webcam device
#'device_id': 'path/to/video/file', # to encode pre-recorded video
'device_id': vcam,
}
if polarity == ExternalDvsEmulatorDevice.MERGED_POLARITY:
num_neurons = 2*(cam_res**2)
else:
num_neurons = cam_res**2
sim.setup(timestep=1.0, min_delay=1.0, max_delay=10.0)
target = sim.Population(num_neurons, model, cell_params)
stimulation = sim.Population(num_neurons, DvsEmulatorDevice, cam_params,
label="Webcam population")
connector = sim.OneToOneConnector(weights=weight_to_spike)
projection = sim.Projection(stimulation, target, connector)
target.record()
sim.run(run_time)
spikes = target.getSpikes(compatible_output=True)
sim.end()
#stimulation._vertex.stop()
print ("Raster plot of the spikes that Spinnaker echoed back")
fig = pylab.figure()
spike_times = [spike_time for (neuron_id, spike_time) in spikes]
spike_ids = [neuron_id for (neuron_id, spike_time) in spikes]
pylab.plot(spike_times, spike_ids, ".", markerfacecolor="None",
markeredgecolor="Blue", markersize=3)
pylab.show()
示例15: print
projections[-1].append(sim.Projection(pre_pop, post_pop, sim.OneToOneConnector(weights = start_w),
synapse_dynamics = sim.SynapseDynamics(slow = stdp_model)
))
print("Simulating for %us" % (sim_time / 1000))
# Run simulation
sim.run(sim_time)
# Read weights from each parameter value being tested
weights = []
for projection_delta_t in projections:
weights.append([p.getWeights()[0] for p in projection_delta_t])
# End simulation on SpiNNaker
sim.end(stop_on_board=True)
#-------------------------------------------------------------------
# Plotting
#-------------------------------------------------------------------
# Sjostrom et al. (2001) experimental data
data_w = [
[ -0.29, -0.41, -0.34, 0.56, 0.75 ],
[ -0.04, 0.14, 0.29, 0.53, 0.56 ]
]
data_e = [
[ 0.08, 0.11, 0.1, 0.32, 0.19 ],
[ 0.05, 0.1, 0.14, 0.11, 0.26 ]
]
# Plot Frequency response