本文整理汇总了Python中spatialdata.geocoords.CSCart.CSCart.initialize方法的典型用法代码示例。如果您正苦于以下问题:Python CSCart.initialize方法的具体用法?Python CSCart.initialize怎么用?Python CSCart.initialize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类spatialdata.geocoords.CSCart.CSCart
的用法示例。
在下文中一共展示了CSCart.initialize方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: getCellSizeDB
# 需要导入模块: from spatialdata.geocoords.CSCart import CSCart [as 别名]
# 或者: from spatialdata.geocoords.CSCart.CSCart import initialize [as 别名]
def getCellSizeDB(points):
from spatialdata.geocoords.CSCart import CSCart
from spatialdata.spatialdb.SimpleDB import SimpleDB
from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
# Coordinate system for mesh (must match coordsys in ExodusII file)
cs = CSCart()
cs._configure()
cs.initialize()
# Spatial database with physical properties (Vs)
dbIO = SimpleIOAscii()
dbIO.inventory.filename = filenameDB
dbIO._configure()
db = SimpleDB()
db.inventory.iohandler = dbIO
db.inventory.label = "Physical properties"
db.inventory.queryType = "linear"
db._configure()
(npoints, spacedim) = points.shape
# Query database
db.open()
db.queryVals(["vs"])
data = numpy.zeros((npoints, 1), dtype=numpy.float64)
err = numpy.zeros((npoints,), dtype=numpy.int32)
db.multiquery(data, err, points, cs)
db.close()
vs = data[:,0]
cellSize = minPeriod*vs / 10.0
return cellSize
示例2: test_initialize
# 需要导入模块: from spatialdata.geocoords.CSCart import CSCart [as 别名]
# 或者: from spatialdata.geocoords.CSCart.CSCart import initialize [as 别名]
def test_initialize(self):
from spatialdata.geocoords.CSCart import CSCart
cs = CSCart()
cs.inventory.units = "km"
cs.inventory.spaceDim = 2
cs._configure()
cs.initialize()
self.assertEqual(1.0e+3, cs.toMeters())
self.assertEqual(2, cs.spaceDim())
return
示例3: xrange
# 需要导入模块: from spatialdata.geocoords.CSCart import CSCart [as 别名]
# 或者: from spatialdata.geocoords.CSCart.CSCart import initialize [as 别名]
points = numpy.zeros((numY*numZ, 3), dtype=numpy.float64)
for iY in xrange(numY):
points[:,0] = 0.0
points[iY*numZ:(iY+1)*numZ,1] = y[iY]
points[iY*numZ:(iY+1)*numZ,2] = z
r = (points[:,1]**2+(points[:,2]+7500.0)**2)**0.5
maskO = numpy.bitwise_and(r > radiusInner, r <= radiusOuter)
maskI = r <= radiusInner
tractionShearLL = maskO*-5.80*(1.0+numpy.cos(numpy.pi*(r-1400.0)/600.0)) + maskI*-11.60
tractionShearUD = 0*tractionShearLL
tractionNormal = 0*tractionShearLL
cs = CSCart()
cs._configure()
cs.initialize()
dataOut = {'points': points,
'coordsys': cs,
'data_dim': 1,
'values': [{'name': 'traction-shear-leftlateral',
'units': 'MPa',
'data': tractionShearLL},
{'name': 'traction-shear-updip',
'units': 'MPa',
'data': tractionShearUD},
{'name': 'traction-normal',
'units': 'MPa',
'data': tractionNormal},
],
}
示例4: test_io
# 需要导入模块: from spatialdata.geocoords.CSCart import CSCart [as 别名]
# 或者: from spatialdata.geocoords.CSCart.CSCart import initialize [as 别名]
def test_io(self):
from spatialdata.spatialdb.SimpleGridAscii import SimpleGridAscii
filename = "data/gridio.spatialdb"
x = numpy.array([-2.0, 0.0, 3.0], dtype=numpy.float64)
y = numpy.array([0.0, 1.0], dtype=numpy.float64)
z = numpy.array([-2.0, -1.0, 2.0], dtype=numpy.float64)
points = numpy.array(
[
[-2.0, 0.0, -2.0],
[-2.0, 1.0, -2.0],
[-2.0, 0.0, -1.0],
[-2.0, 1.0, -1.0],
[-2.0, 0.0, 2.0],
[-2.0, 1.0, 2.0],
[0.0, 0.0, -2.0],
[0.0, 1.0, -2.0], # query (5.7, 8.2)
[0.0, 0.0, -1.0],
[0.0, 1.0, -1.0],
[0.0, 0.0, 2.0],
[0.0, 1.0, 2.0],
[3.0, 0.0, -2.0],
[3.0, 1.0, -2.0],
[3.0, 0.0, -1.0],
[3.0, 1.0, -1.0],
[3.0, 0.0, 2.0],
[3.0, 1.0, 2.0],
],
dtype=numpy.float64,
)
one = numpy.array(
[6.6, 5.5, 2.3, 5.7, 6.3, 3.4, 7.2, 5.7, 3.4, 5.7, 9.4, 7.2, 4.8, 9.2, 5.8, 4.7, 7.8, 2.9],
dtype=numpy.float64,
)
two = numpy.array(
[3.4, 6.7, 4.1, 2.0, 6.7, 6.4, 6.8, 8.2, 9.8, 2.3, 8.5, 9.3, 7.5, 8.3, 8.5, 8.9, 6.2, 8.3],
dtype=numpy.float64,
)
cs = CSCart()
cs.initialize()
writer = SimpleGridAscii()
writer.inventory.filename = filename
writer._configure()
writer.write(
{
"points": points,
"x": x,
"y": y,
"z": z,
"coordsys": cs,
"data_dim": 3,
"values": [{"name": "one", "units": "m", "data": one}, {"name": "two", "units": "m", "data": two}],
}
)
db = SimpleGridDB()
db.inventory.label = "test"
db.inventory.queryType = "nearest"
db.inventory.filename = filename
db._configure()
self._db = db
locs = numpy.array([[0.1, 0.95, -1.8]], numpy.float64)
cs = CSCart()
cs._configure()
queryVals = ["two", "one"]
dataE = numpy.array([[8.2, 5.7]], numpy.float64)
errE = [0]
db = self._db
db.open()
db.queryVals(queryVals)
data = numpy.zeros(dataE.shape, dtype=numpy.float64)
err = []
nlocs = locs.shape[0]
for i in xrange(nlocs):
e = db.query(data[i, :], locs[i, :], cs)
err.append(e)
db.close()
self.assertEqual(len(errE), len(err))
for vE, v in zip(errE, err):
self.assertEqual(vE, v)
self.assertEqual(len(dataE.shape), len(data.shape))
for dE, d in zip(dataE.shape, data.shape):
self.assertEqual(dE, d)
for vE, v in zip(numpy.reshape(dataE, -1), numpy.reshape(data, -1)):
self.assertAlmostEqual(vE, v, 6)
return
示例5: test_io_2d
# 需要导入模块: from spatialdata.geocoords.CSCart import CSCart [as 别名]
# 或者: from spatialdata.geocoords.CSCart.CSCart import initialize [as 别名]
def test_io_2d(self):
from spatialdata.spatialdb.SimpleGridAscii import SimpleGridAscii
filename = "data/gridio2d.spatialdb"
x = numpy.array([-2.0, 0.0, 3.0], dtype=numpy.float64)
y = numpy.array([0.0, 1.0], dtype=numpy.float64)
points = numpy.array([
[-2.0, 0.0],
[-2.0, 1.0],
[ 0.0, 0.0],
[ 0.0, 1.0], # query (5.7, 8.2)
[ 3.0, 0.0],
[ 3.0, 1.0],
], dtype=numpy.float64)
one = numpy.array([6.6, 5.5, 7.2, 5.7, 4.8, 9.2], dtype=numpy.float64)
two = numpy.array([3.4, 6.7, 6.8, 8.2, 7.5, 8.3], dtype=numpy.float64)
cs = CSCart()
cs.inventory.spaceDim = 2
cs._configure()
cs.initialize()
writer = SimpleGridAscii()
writer.inventory.filename = filename
writer._configure()
writer.write({'points': points,
'x': x,
'y': y,
'coordsys': cs,
'data_dim': 2,
'values': [{'name': "one",
'units': "m",
'data': one},
{'name': "two",
'units': "m",
'data': two},
]})
db = SimpleGridDB()
db.inventory.label = "test"
db.inventory.queryType = "nearest"
db.inventory.filename = filename
db._configure()
self._db = db
locs = numpy.array( [[0.1, 0.95]], numpy.float64)
queryVals = ["two", "one"]
dataE = numpy.array( [[8.2, 5.7]], numpy.float64)
errE = [0]
db = self._db
db.open()
db.queryVals(queryVals)
data = numpy.zeros(dataE.shape, dtype=numpy.float64)
err = []
nlocs = locs.shape[0]
for i in xrange(nlocs):
e = db.query(data[i,:], locs[i,:], cs)
err.append(e)
db.close()
self.assertEqual(len(errE), len(err))
for vE, v in zip(errE, err):
self.assertEqual(vE, v)
self.assertEqual(len(dataE.shape), len(data.shape))
for dE, d in zip(dataE.shape, data.shape):
self.assertEqual(dE, d)
for vE, v in zip(numpy.reshape(dataE, -1), numpy.reshape(data, -1)):
self.assertAlmostEqual(vE, v, 6)
return
示例6: test_write
# 需要导入模块: from spatialdata.geocoords.CSCart import CSCart [as 别名]
# 或者: from spatialdata.geocoords.CSCart.CSCart import initialize [as 别名]
def test_write(self):
"""
Test write().
"""
# Database info
cs = CSCart()
cs.initialize()
filename = "data/test.spatialdb"
data = {'points': numpy.array( [ [1.0, 2.0, 3.0],
[0.5, 3.0, -3.0]], numpy.float64),
'coordsys': cs,
'data_dim': 1,
'values': [{'name': "One",
'units': "m",
'data': numpy.array( [2.0, 8.0], numpy.float64)},
{'name': "Two",
'units': "m",
'data': numpy.array( [-2.0, 3.0], numpy.float64)}]}
dataDim = 1
qlocs = numpy.array( [[0.875, 2.25, 1.5],
[0.6, 2.8, -1.8],
[1.0, 2.0, 3.0]],
numpy.float64)
valsE = numpy.array( [[-0.75, 3.5],
[2.0, 6.8],
[-2.0, 2.0]], numpy.float64)
errE = [0, 0, 0]
# Write database
from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii
writer = SimpleIOAscii()
writer.inventory.filename = filename
writer._configure()
writer.write(data)
# Test write using query
from spatialdata.spatialdb.SimpleDB import SimpleDB
db = SimpleDB()
db.inventory.label = "test"
db.inventory.queryType = "linear"
db.inventory.iohandler.inventory.filename = filename
db.inventory.iohandler._configure()
db._configure()
db.open()
db.queryVals(["two", "one"])
vals = numpy.zeros(valsE.shape, dtype=numpy.float64)
err = []
nlocs = qlocs.shape[0]
for i in xrange(nlocs):
e = db.query(vals[i,:], qlocs[i,:], cs)
err.append(e)
db.close()
self.assertEqual(len(valsE.shape), len(vals.shape))
for dE, d in zip(valsE.shape, vals.shape):
self.assertEqual(dE, d)
for vE, v in zip(numpy.reshape(valsE, -1), numpy.reshape(vals, -1)):
self.assertAlmostEqual(vE, v, 6)
return