本文整理汇总了Python中smqtk.representation.descriptor_index.memory.MemoryDescriptorIndex.iterdescriptors方法的典型用法代码示例。如果您正苦于以下问题:Python MemoryDescriptorIndex.iterdescriptors方法的具体用法?Python MemoryDescriptorIndex.iterdescriptors怎么用?Python MemoryDescriptorIndex.iterdescriptors使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类smqtk.representation.descriptor_index.memory.MemoryDescriptorIndex
的用法示例。
在下文中一共展示了MemoryDescriptorIndex.iterdescriptors方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_remove
# 需要导入模块: from smqtk.representation.descriptor_index.memory import MemoryDescriptorIndex [as 别名]
# 或者: from smqtk.representation.descriptor_index.memory.MemoryDescriptorIndex import iterdescriptors [as 别名]
def test_remove(self):
i = MemoryDescriptorIndex()
descrs = [random_descriptor() for _ in xrange(100)]
i.add_many_descriptors(descrs)
ntools.assert_equal(len(i), 100)
ntools.assert_equal(list(i.iterdescriptors()), descrs)
# remove singles
i.remove_descriptor(descrs[0].uuid())
ntools.assert_equal(len(i), 99)
ntools.assert_equal(set(i.iterdescriptors()),
set(descrs[1:]))
# remove many
rm_d = descrs[slice(45, 80, 3)]
i.remove_many_descriptors((d.uuid() for d in rm_d))
ntools.assert_equal(len(i), 99 - len(rm_d))
ntools.assert_equal(set(i.iterdescriptors()),
set(descrs[1:]).difference(rm_d))
示例2: test_iterdescrs
# 需要导入模块: from smqtk.representation.descriptor_index.memory import MemoryDescriptorIndex [as 别名]
# 或者: from smqtk.representation.descriptor_index.memory.MemoryDescriptorIndex import iterdescriptors [as 别名]
def test_iterdescrs(self):
i = MemoryDescriptorIndex()
descrs = [random_descriptor() for _ in xrange(100)]
i.add_many_descriptors(descrs)
ntools.assert_equal(set(i.iterdescriptors()),
set(descrs))
示例3: IqrSession
# 需要导入模块: from smqtk.representation.descriptor_index.memory import MemoryDescriptorIndex [as 别名]
# 或者: from smqtk.representation.descriptor_index.memory.MemoryDescriptorIndex import iterdescriptors [as 别名]
#.........这里部分代码省略.........
:raises RuntimeError: There are no positive example descriptors in this
session to use as a basis for querying.
"""
if len(self.ex_pos_descriptors) + \
len(self.positive_descriptors) <= 0:
raise RuntimeError("No positive descriptors to query the neighbor "
"index with.")
# Not clearing index because this step is intended to be additive
# build up new working index
# TODO: Only query using new positives since previous queries
for p in self.ex_pos_descriptors.itervalues():
if p.uuid() not in self._wi_init_seeds:
self._log.info("Querying neighbors to: %s", p)
self.working_index.add_many_descriptors(
self.nn_index.nn(p, n=self.pos_seed_neighbors)[0]
)
self._wi_init_seeds.add(p.uuid())
for p in self.positive_descriptors:
if p.uuid() not in self._wi_init_seeds:
self._log.info("Querying neighbors to: %s", p)
self.working_index.add_many_descriptors(
self.nn_index.nn(p, n=self.pos_seed_neighbors)[0]
)
self._wi_init_seeds.add(p.uuid())
# Make new relevancy index
self._log.info("Creating new relevancy index over working index.")
#: :type: smqtk.algorithms.relevancy_index.RelevancyIndex
self.rel_index = plugin.from_plugin_config(self.rel_index_config,
get_relevancy_index_impls)
self.rel_index.build_index(self.working_index.iterdescriptors())
def adjudicate(self, new_positives=(), new_negatives=(),
un_positives=(), un_negatives=()):
"""
Update current state of working index positive and negative
adjudications based on descriptor UUIDs.
:param new_positives: Descriptors of elements in our working index to
now be considered to be positively relevant.
:type new_positives: collections.Iterable[smqtk.representation.DescriptorElement]
:param new_negatives: Descriptors of elements in our working index to
now be considered to be negatively relevant.
:type new_negatives: collections.Iterable[smqtk.representation.DescriptorElement]
:param un_positives: Descriptors of elements in our working index to now
be considered not positive any more.
:type un_positives: collections.Iterable[smqtk.representation.DescriptorElement]
:param un_negatives: Descriptors of elements in our working index to now
be considered not negative any more.
:type un_negatives: collections.Iterable[smqtk.representation.DescriptorElement]
"""
with self.lock:
self.positive_descriptors.update(new_positives)
self.positive_descriptors.difference_update(un_positives)
self.positive_descriptors.difference_update(new_negatives)
self.negative_descriptors.update(new_negatives)
self.negative_descriptors.difference_update(un_negatives)
self.negative_descriptors.difference_update(new_positives)
示例4: IqrSession
# 需要导入模块: from smqtk.representation.descriptor_index.memory import MemoryDescriptorIndex [as 别名]
# 或者: from smqtk.representation.descriptor_index.memory.MemoryDescriptorIndex import iterdescriptors [as 别名]
#.........这里部分代码省略.........
pos_examples = (self.external_positive_descriptors |
self.positive_descriptors)
if len(pos_examples) == 0:
raise RuntimeError("No positive descriptors to query the neighbor "
"index with.")
# Not clearing working index because this step is intended to be
# additive.
updated = False
# adding to working index
self._log.info("Building working index using %d positive examples "
"(%d external, %d adjudicated)",
len(pos_examples),
len(self.external_positive_descriptors),
len(self.positive_descriptors))
# TODO: parallel_map and reduce with merge-dict
for p in pos_examples:
if p.uuid() not in self._wi_seeds_used:
self._log.debug("Querying neighbors to: %s", p)
self.working_index.add_many_descriptors(
nn_index.nn(p, n=self.pos_seed_neighbors)[0]
)
self._wi_seeds_used.add(p.uuid())
updated = True
# Make new relevancy index
if updated:
self._log.info("Creating new relevancy index over working index.")
#: :type: smqtk.algorithms.relevancy_index.RelevancyIndex
self.rel_index = plugin.from_plugin_config(
self.rel_index_config, get_relevancy_index_impls()
)
self.rel_index.build_index(self.working_index.iterdescriptors())
def refine(self):
""" Refine current model results based on current adjudication state
:raises RuntimeError: No working index has been initialized.
:meth:`update_working_index` should have been called after
adjudicating some positive examples.
:raises RuntimeError: There are no adjudications to run on. We must
have at least one positive adjudication.
"""
with self.lock:
if not self.rel_index:
raise RuntimeError("No relevancy index yet. Must not have "
"initialized session (no working index).")
# combine pos/neg adjudications + added external data descriptors
pos = self.positive_descriptors | self.external_positive_descriptors
neg = self.negative_descriptors | self.external_negative_descriptors
if not pos:
raise RuntimeError("Did not find at least one positive "
"adjudication.")
self._log.debug("Ranking working set with %d pos and %d neg total "
"examples.", len(pos), len(neg))
element_probability_map = self.rel_index.rank(pos, neg)
if self.results is None:
self.results = IqrResultsDict()
self.results.update(element_probability_map)
示例5: IqrSession
# 需要导入模块: from smqtk.representation.descriptor_index.memory import MemoryDescriptorIndex [as 别名]
# 或者: from smqtk.representation.descriptor_index.memory.MemoryDescriptorIndex import iterdescriptors [as 别名]
#.........这里部分代码省略.........
self.negative_descriptors.update(new_negatives)
self.negative_descriptors.difference_update(un_negatives)
self.negative_descriptors.difference_update(new_positives)
def update_working_index(self, nn_index):
"""
Initialize or update our current working index using the given
:class:`.NearestNeighborsIndex` instance given our current positively
labeled descriptor elements.
We only query from the index for new positive elements since the last
update or reset.
:param nn_index: :class:`.NearestNeighborsIndex` to query from.
:type nn_index: smqtk.algorithms.NearestNeighborsIndex
:raises RuntimeError: There are no positive example descriptors in this
session to use as a basis for querying.
"""
if len(self.positive_descriptors) <= 0:
raise RuntimeError("No positive descriptors to query the neighbor "
"index with.")
# Not clearing working index because this step is intended to be
# additive.
updated = False
# adding to working index
for p in self.positive_descriptors:
if p.uuid() not in self._wi_seeds_used:
self._log.info("Querying neighbors to: %s", p)
self.working_index.add_many_descriptors(
nn_index.nn(p, n=self.pos_seed_neighbors)[0]
)
self._wi_seeds_used.add(p.uuid())
updated = True
# Make new relevancy index
if updated:
self._log.info("Creating new relevancy index over working index.")
#: :type: smqtk.algorithms.relevancy_index.RelevancyIndex
self.rel_index = plugin.from_plugin_config(self.rel_index_config,
get_relevancy_index_impls())
self.rel_index.build_index(self.working_index.iterdescriptors())
def refine(self):
""" Refine current model results based on current adjudication state
:raises RuntimeError: No working index has been initialized.
:meth:`update_working_index` should have been called after
adjudicating some positive examples.
:raises RuntimeError: There are no adjudications to run on. We must
have at least one positive adjudication.
"""
with self.lock:
if not self.rel_index:
raise RuntimeError("No relevancy index yet. Must not have "
"initialized session (no working index).")
# fuse pos/neg adjudications + added positive data descriptors
pos = self.positive_descriptors
neg = self.negative_descriptors
if not pos:
raise RuntimeError("Did not find at least one positive "
"adjudication.")
element_probability_map = self.rel_index.rank(pos, neg)
if self.results is None:
self.results = IqrResultsDict()
self.results.update(element_probability_map)
# Force adjudicated positives and negatives to be probability 1 and
# 0, respectively, since we want to control where they show up in
# our results view.
# - Not all pos/neg descriptors may be in our working index.
for d in pos:
if d in self.results:
self.results[d] = 1.0
for d in neg:
if d in self.results:
self.results[d] = 0.0
def reset(self):
""" Reset the IQR Search state
No positive adjudications, reload original feature data
"""
with self.lock:
self.working_index.clear()
self._wi_seeds_used.clear()
self.positive_descriptors.clear()
self.negative_descriptors.clear()
self.rel_index = None
self.results = None