当前位置: 首页>>代码示例>>Python>>正文


Python mlp.MultiLayerPerceptron类代码示例

本文整理汇总了Python中sknn.mlp.MultiLayerPerceptron的典型用法代码示例。如果您正苦于以下问题:Python MultiLayerPerceptron类的具体用法?Python MultiLayerPerceptron怎么用?Python MultiLayerPerceptron使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了MultiLayerPerceptron类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestConvolution

class TestConvolution(unittest.TestCase):

    def setUp(self):
        self.nn = MLP(
            layers=[
                C("Rectifier", kernel_shape=(3,3), channels=4),
                L("Linear")],
            n_iter=1)

    def test_FitError(self):
        # The sparse matrices can't store anything but 2D, but convolution needs 3D or more.
        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X, y = sparse_matrix((8, 16)), sparse_matrix((8, 16))
            assert_raises((TypeError, NotImplementedError), self.nn._fit, X, y)

    def test_FitResizeSquare(self):
        # The sparse matrices can't store anything but 2D, but convolution needs 3D or more.
        X, y = numpy.zeros((8, 36)), numpy.zeros((8, 4))
        self.nn._fit(X, y)

    def test_FitResizeFails(self):
        # The sparse matrices can't store anything but 2D, but convolution needs 3D or more.
        X, y = numpy.zeros((8, 35)), numpy.zeros((8, 4))
        assert_raises(AssertionError, self.nn._fit, X, y)
开发者ID:mangwang,项目名称:scikit-neuralnetwork,代码行数:25,代码来源:test_types.py

示例2: TestMemoryMap

class TestMemoryMap(unittest.TestCase):

    __types__ = ['float32', 'float64']

    def setUp(self):
        self.nn = MLP(layers=[L("Linear", units=3)], n_iter=1)
        self.directory = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.directory)

    def make(self, name, shape, dtype):
        filename = os.path.join(self.directory, name)
        return numpy.memmap(filename, dtype=dtype, mode='w+', shape=shape)

    def test_FitAllTypes(self):
        for t in self.__types__:
            theano.config.floatX = t
            X = self.make('X', (12, 3), dtype=t)
            y = self.make('y', (12, 3), dtype=t)
            self.nn._fit(X, y)

    def test_PredictAllTypes(self):
        for t in self.__types__:
            theano.config.floatX = t
            X = self.make('X', (12, 3), dtype=t)
            yp = self.nn._predict(X)
开发者ID:BK-University,项目名称:scikit-neuralnetwork,代码行数:27,代码来源:test_types.py

示例3: TestTrainingProcedure

class TestTrainingProcedure(unittest.TestCase):

    def test_FitTerminateStable(self):
        a_in, a_out = numpy.zeros((8,16)), numpy.zeros((8,4))
        activation = "Gaussian" if sknn.backend.name == "pylearn2" else "Linear"
        self.nn = MLP(
                    layers=[L(activation)], learning_rate=0.001,
                    n_iter=None, n_stable=1, f_stable=0.01,
                    valid_set=(a_in, a_out))

        self.nn._fit(a_in, a_out)

    def test_FitAutomaticValidation(self):
        a_in, a_out = numpy.zeros((8,16)), numpy.zeros((8,4))
        self.nn = MLP(
                    layers=[L("Linear")], learning_rate=0.001,
                    n_iter=10, n_stable=1, f_stable=0.1,
                    valid_size=0.25)

        self.nn._fit(a_in, a_out)
        
    def test_TrainingInfinite(self):
        a_in, a_out = numpy.zeros((8,16)), numpy.zeros((8,4))
        self.nn = MLP(layers=[L("Linear")])
        assert_raises(AssertionError, self.nn._fit, a_in, a_out)
开发者ID:dnacuna,项目名称:scikit-neuralnetwork,代码行数:25,代码来源:test_training.py

示例4: TestScipySparseMatrix

class TestScipySparseMatrix(unittest.TestCase):

    def setUp(self):
        self.nn = MLP(layers=[L("Linear", units=4)], n_iter=1)

    def test_FitFloat64(self):
        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X = sparse_matrix((8, 4), dtype=numpy.float64)
            y = sparse_matrix((8, 4), dtype=numpy.float64)
            self.nn._fit(X, y)

    def test_FitFloat32(self):
        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X = sparse_matrix((8, 4), dtype=numpy.float32)
            y = sparse_matrix((8, 4), dtype=numpy.float32)
            self.nn._fit(X, y)

    def test_FitHybrid(self):
        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X = sparse_matrix((8, 4), dtype=numpy.float32)
            y = numpy.zeros((8, 4), dtype=numpy.float32)
            self.nn._fit(X, y)

    def test_FitMutator(self):
        def mutate(x):
            self.count += 1
            return x - 0.5
        self.nn.mutator = mutate

        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X = sparse_matrix((8, 4), dtype=numpy.float32)
            y = numpy.zeros((8, 4), dtype=numpy.float32)

            self.count = 0
            assert_equal(0, self.count)
            self.nn._fit(X, y)
            assert_equal(8, self.count)

    def test_Predict64(self):
        theano.config.floatX = 'float64'
        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X = sparse_matrix((8, 4), dtype=numpy.float64)
            yp = self.nn._predict(X)
            assert_equal(yp.dtype, numpy.float64)

    def test_Predict32(self):
        theano.config.floatX = 'float32'
        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X = sparse_matrix((8, 4), dtype=numpy.float32)
            yp = self.nn._predict(X)
            assert_equal(yp.dtype, numpy.float32)
开发者ID:mangwang,项目名称:scikit-neuralnetwork,代码行数:57,代码来源:test_types.py

示例5: TestScipySparseMatrix

class TestScipySparseMatrix(unittest.TestCase):

    def setUp(self):
        self.nn = MLP(layers=[L("Gaussian", units=4)], n_iter=1)

    def test_FitFloat64(self):
        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X = sparse_matrix((8, 4), dtype=numpy.float64)
            y = sparse_matrix((8, 4), dtype=numpy.float64)
            self.nn._fit(X, y)

    def test_FitFloat32(self):
        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X = sparse_matrix((8, 4), dtype=numpy.float32)
            y = sparse_matrix((8, 4), dtype=numpy.float32)
            self.nn._fit(X, y)

    def test_Predict64(self):
        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X = sparse_matrix((8, 4), dtype=numpy.float64)
            self.nn._predict(X)

    def test_Predict32(self):
        for t in SPARSE_TYPES:
            sparse_matrix = getattr(scipy.sparse, t)
            X = sparse_matrix((8, 4), dtype=numpy.float32)
            self.nn._predict(X)
开发者ID:BrianMiner,项目名称:scikit-neuralnetwork,代码行数:30,代码来源:test_types.py

示例6: setUp

 def setUp(self):
     self.batch_count = 0
     self.batch_items = 0
     self.nn = MLP(
                 layers=[L("Rectifier")],
                 learning_rate=0.001, n_iter=1,
                 callback={'on_batch_start': self.on_batch_start})
开发者ID:BK-University,项目名称:scikit-neuralnetwork,代码行数:7,代码来源:test_training.py

示例7: test_FitTerminateStable

    def test_FitTerminateStable(self):
        a_in, a_out = numpy.zeros((8,16)), numpy.zeros((8,4))
        self.nn = MLP(
                    layers=[L("Gaussian")], learning_rate=0.001,
                    n_iter=None, n_stable=1, f_stable=0.1,
                    valid_set=(a_in, a_out))

        self.nn._fit(a_in, a_out)
开发者ID:anurive,项目名称:scikit-neuralnetwork,代码行数:8,代码来源:test_training.py

示例8: test_FitAutomaticValidation

    def test_FitAutomaticValidation(self):
        a_in, a_out = numpy.zeros((8,16)), numpy.zeros((8,4))
        self.nn = MLP(
                    layers=[L("Linear")], learning_rate=0.001,
                    n_iter=10, n_stable=1, f_stable=0.1,
                    valid_size=0.25)

        self.nn._fit(a_in, a_out)
开发者ID:Ryan311,项目名称:scikit-neuralnetwork,代码行数:8,代码来源:test_training.py

示例9: test_FitTerminateStable

    def test_FitTerminateStable(self):
        a_in, a_out = numpy.zeros((8,16)), numpy.zeros((8,4))
        activation = "Gaussian" if sknn.backend.name == "pylearn2" else "Linear"
        self.nn = MLP(
                    layers=[L(activation)], learning_rate=0.001,
                    n_iter=None, n_stable=1, f_stable=0.01,
                    valid_set=(a_in, a_out))

        self.nn._fit(a_in, a_out)
开发者ID:Ryan311,项目名称:scikit-neuralnetwork,代码行数:9,代码来源:test_training.py

示例10: TestTrainingProcedure

class TestTrainingProcedure(unittest.TestCase):

    def test_FitTerminateStable(self):
        a_in, a_out = numpy.zeros((8,16)), numpy.zeros((8,4))
        self.nn = MLP(
                    layers=[L("Gaussian")], learning_rate=0.001,
                    n_iter=None, n_stable=1, f_stable=0.1,
                    valid_set=(a_in, a_out))

        self.nn._fit(a_in, a_out)

    def test_FitAutomaticValidation(self):
        a_in, a_out = numpy.zeros((8,16)), numpy.zeros((8,4))
        self.nn = MLP(
                    layers=[L("Gaussian")], learning_rate=0.001,
                    n_iter=10, n_stable=1, f_stable=0.1,
                    valid_size=0.25)

        self.nn._fit(a_in, a_out)
开发者ID:anurive,项目名称:scikit-neuralnetwork,代码行数:19,代码来源:test_training.py

示例11: test_TrainConstantOneEpoch

    def test_TrainConstantOneEpoch(self):
        for t in ['csr_matrix', 'csc_matrix']:
            sparse_matrix = getattr(scipy.sparse, t)
            X_s, y_s = sparse_matrix((8, 16), dtype=numpy.float32), sparse_matrix((8, 16), dtype=numpy.float32)
            X, y = X_s.toarray(), y_s.toarray()
            
            nn1 = MLP(layers=[L("Linear")], n_iter=1, random_state=1234)
            nn1._fit(X, y)

            nn2 = MLP(layers=[L("Linear")], n_iter=1, random_state=1234)
            nn2._fit(X_s, y_s)

            assert_true(numpy.all(nn1._predict(X_s) == nn1._predict(X_s)))
开发者ID:mangwang,项目名称:scikit-neuralnetwork,代码行数:13,代码来源:test_types.py

示例12: test_TrainingUserDefined

    def test_TrainingUserDefined(self):
        self.counter = 0
        
        def terminate(**_):
            self.counter += 1
            return False

        a_in, a_out = numpy.zeros((8,16)), numpy.zeros((8,4))
        self.nn = MLP(layers=[L("Linear")], n_iter=100, n_stable=None, callback={'on_epoch_finish': terminate})
        self.nn._fit(a_in, a_out)
        
        assert_equals(self.counter, 1)
开发者ID:Ryan311,项目名称:scikit-neuralnetwork,代码行数:12,代码来源:test_training.py

示例13: TestBatchSize

class TestBatchSize(unittest.TestCase):

    def setUp(self):
        self.batch_count = 0
        self.nn = MLP(
                    layers=[L("Rectifier")],
                    learning_rate=0.001, n_iter=1,
                    callback={'on_batch_start': self.on_batch_start})

    def on_batch_start(self, **args):
        self.batch_count += 1

    def test_BatchSizeLargerThanInput(self):
        self.nn.batch_size = 32
        a_in, a_out = numpy.zeros((8,16)), numpy.ones((8,4))
        self.nn._fit(a_in, a_out)
        assert_equals(1, self.batch_count)

    def test_BatchSizeSmallerThanInput(self):
        self.nn.batch_size = 4
        a_in, a_out = numpy.ones((8,16)), numpy.zeros((8,4))
        self.nn._fit(a_in, a_out)
        assert_equals(2, self.batch_count)

    def test_BatchSizeNonMultiple(self):
        self.nn.batch_size = 4
        a_in, a_out = numpy.zeros((9,16)), numpy.ones((9,4))
        self.nn._fit(a_in, a_out)
        assert_equals(3, self.batch_count)
开发者ID:Ryan311,项目名称:scikit-neuralnetwork,代码行数:29,代码来源:test_training.py

示例14: test_TrainRandomOneEpoch

    def test_TrainRandomOneEpoch(self):
        for t in ['dok_matrix', 'lil_matrix']:
            sparse_matrix = getattr(scipy.sparse, t)
            X_s, y_s = sparse_matrix((8, 16), dtype=numpy.float32), sparse_matrix((8, 16), dtype=numpy.float32)
            for i in range(X_s.shape[0]):
                X_s[i,random.randint(0, X_s.shape[1]-1)] = 1.0
                y_s[i,random.randint(0, y_s.shape[1]-1)] = 1.0
            X, y = X_s.toarray(), y_s.toarray()

            nn1 = MLP(layers=[L("Linear")], n_iter=1, random_state=1234)
            nn1._fit(X, y)

            nn2 = MLP(layers=[L("Linear")], n_iter=1, random_state=1234)
            nn2._fit(X_s, y_s)

            assert_true(numpy.all(nn1._predict(X_s) == nn1._predict(X_s)))
开发者ID:mangwang,项目名称:scikit-neuralnetwork,代码行数:16,代码来源:test_types.py

示例15: TestInputDataTypes

class TestInputDataTypes(unittest.TestCase):

    def setUp(self):
        self.nn = MLP(layers=[L("Gaussian")], n_iter=1)

    def test_FitSciPySparse(self):
        X, y = scipy.sparse.csr_matrix((8, 4)), scipy.sparse.csr_matrix((8, 4))
        self.nn._fit(X, y)

    def test_PredictSciPySparse(self):
        X, y = scipy.sparse.csr_matrix((8, 4)), scipy.sparse.csr_matrix((8, 4))
        self.nn._fit(X, y)
        self.nn._predict(X)
开发者ID:LEONOB2014,项目名称:scikit-neuralnetwork,代码行数:13,代码来源:test_types.py


注:本文中的sknn.mlp.MultiLayerPerceptron类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。