当前位置: 首页>>代码示例>>Python>>正文


Python MinMaxScaler.transform方法代码示例

本文整理汇总了Python中sklearn.preprocessing.data.MinMaxScaler.transform方法的典型用法代码示例。如果您正苦于以下问题:Python MinMaxScaler.transform方法的具体用法?Python MinMaxScaler.transform怎么用?Python MinMaxScaler.transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.preprocessing.data.MinMaxScaler的用法示例。


在下文中一共展示了MinMaxScaler.transform方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_min_max_scaler_zero_variance_features

# 需要导入模块: from sklearn.preprocessing.data import MinMaxScaler [as 别名]
# 或者: from sklearn.preprocessing.data.MinMaxScaler import transform [as 别名]
def test_min_max_scaler_zero_variance_features():
    """Check min max scaler on toy data with zero variance features"""
    X = [[0., 1., +0.5],
         [0., 1., -0.1],
         [0., 1., +1.1]]

    X_new = [[+0., 2., 0.5],
             [-1., 1., 0.0],
             [+0., 1., 1.5]]

    # default params
    scaler = MinMaxScaler()
    X_trans = scaler.fit_transform(X)
    X_expected_0_1 = [[0., 0., 0.5],
                      [0., 0., 0.0],
                      [0., 0., 1.0]]
    assert_array_almost_equal(X_trans, X_expected_0_1)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    X_trans_new = scaler.transform(X_new)
    X_expected_0_1_new = [[+0., 1., 0.500],
                          [-1., 0., 0.083],
                          [+0., 0., 1.333]]
    assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2)

    # not default params
    scaler = MinMaxScaler(feature_range=(1, 2))
    X_trans = scaler.fit_transform(X)
    X_expected_1_2 = [[1., 1., 1.5],
                      [1., 1., 1.0],
                      [1., 1., 2.0]]
    assert_array_almost_equal(X_trans, X_expected_1_2)
开发者ID:CodeGenerator,项目名称:scikit-learn,代码行数:35,代码来源:test_data.py


注:本文中的sklearn.preprocessing.data.MinMaxScaler.transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。