当前位置: 首页>>代码示例>>Python>>正文


Python KernelCenterer.fit_transform方法代码示例

本文整理汇总了Python中sklearn.preprocessing.KernelCenterer.fit_transform方法的典型用法代码示例。如果您正苦于以下问题:Python KernelCenterer.fit_transform方法的具体用法?Python KernelCenterer.fit_transform怎么用?Python KernelCenterer.fit_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.preprocessing.KernelCenterer的用法示例。


在下文中一共展示了KernelCenterer.fit_transform方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: center_normTrace_decomp

# 需要导入模块: from sklearn.preprocessing import KernelCenterer [as 别名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 别名]
    def center_normTrace_decomp(K):
        print 'centering kernel'
        #### Get transformed features for K_train that DONT snoop when centering, tracing, or eiging#####
        Kcent=KernelCenterer()
        Ktrain=Kcent.fit_transform(K[:in_samples,:in_samples])
        #Ktrain=Ktrain/float(np.trace(Ktrain))
        #[EigVals,EigVectors]=scipy.sparse.linalg.eigsh(Ktrain,k=reduced_dimen,which='LM')
        [EigVals,EigVectors]=scipy.linalg.eigh(Ktrain,eigvals=(in_samples-reduced_dimen,in_samples-1))
        for i in range(len(EigVals)): 
            if EigVals[i]<=0: EigVals[i]=0
        EigVals=np.flipud(np.fliplr(np.diag(EigVals)))
        EigVectors=np.fliplr(EigVectors)
        Ktrain_decomp=np.dot(EigVectors,scipy.linalg.sqrtm(EigVals))
       
        #### Get transformed features for K_test using K_train implied mapping ####
        Kcent=KernelCenterer()
        Kfull=Kcent.fit_transform(K)
        #Kfull=Kfull/float(np.trace(Kfull))
        K_train_test=Kfull[in_samples:,:in_samples]
        Ktest_decomp=np.dot(K_train_test,np.linalg.pinv(Ktrain_decomp.T))

        ####combine mapped train and test vectors and normalize each vector####
        Kdecomp=np.vstack((Ktrain_decomp,Ktest_decomp))
        print 'doing normalization'
        Kdecomp=normalize(Kdecomp,copy=False)
        return Kdecomp
开发者ID:matthew-norton,项目名称:SVM-Kernel-Selection,代码行数:28,代码来源:Kernels.py

示例2: test_center_kernel

# 需要导入模块: from sklearn.preprocessing import KernelCenterer [as 别名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 别名]
def test_center_kernel():
    """Test that KernelCenterer is equivalent to Scaler in feature space"""
    X_fit = np.random.random((5, 4))
    scaler = Scaler(with_std=False)
    scaler.fit(X_fit)
    X_fit_centered = scaler.transform(X_fit)
    K_fit = np.dot(X_fit, X_fit.T)

    # center fit time matrix
    centerer = KernelCenterer()
    K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T)
    K_fit_centered2 = centerer.fit_transform(K_fit)
    assert_array_almost_equal(K_fit_centered, K_fit_centered2)

    # center predict time matrix
    X_pred = np.random.random((2, 4))
    K_pred = np.dot(X_pred, X_fit.T)
    X_pred_centered = scaler.transform(X_pred)
    K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T)
    K_pred_centered2 = centerer.transform(K_pred)
    assert_array_almost_equal(K_pred_centered, K_pred_centered2)
开发者ID:Yangqing,项目名称:scikit-learn,代码行数:23,代码来源:test_preprocessing.py

示例3: KernelECA

# 需要导入模块: from sklearn.preprocessing import KernelCenterer [as 别名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 别名]

#.........这里部分代码省略.........

    """

    def __init__(self, n_components=None, kernel="linear",
                 gamma=None, degree=3, coef0=1, kernel_params=None, eigen_solver='auto',
                 tol=0, max_iter=None, random_state=None,center=False):
        self.n_components = n_components
        self._kernel = kernel
        self.kernel_params = kernel_params
        self.gamma = gamma
        self.degree = degree
        self.coef0 = coef0
        self.eigen_solver = eigen_solver
        self.tol = tol
        self.max_iter = max_iter
        self.random_state = random_state
        self._centerer = KernelCenterer()
        self.center = center
        
    @property
    def _pairwise(self):
        return self.kernel == "precomputed"

    def _get_kernel(self, X, Y=None):
        if callable(self._kernel):
            params = self.kernel_params or {}
        else:
            params = {"gamma": self.gamma,
                      "degree": self.degree,
                      "coef0": self.coef0}
        return pairwise_kernels(X, Y, metric=self._kernel,
                                filter_params=True, **params)

    def _fit_transform(self, K):
        """ Fit's using kernel K"""
        # center kernel
        if self.center == True:
            K = self._centerer.fit_transform(K)

        X_transformed = self.kernelECA(K=K)    
        self.X_transformed = X_transformed
        return K        

    def fit(self, X, y=None):
        """Fit the model from data in X.

        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)
            Training vector, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        K = self._get_kernel(X)
        self._fit_transform(K)

        self.X_fit_ = X
        return self

    def fit_transform(self, X, y=None, **params):
        """Fit the model from data in X and transform X.
开发者ID:tsterbak,项目名称:kernel_eca,代码行数:69,代码来源:kernel_eca.py

示例4: KernelFisher

# 需要导入模块: from sklearn.preprocessing import KernelCenterer [as 别名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 别名]

#.........这里部分代码省略.........
        self.means_ = []
        for ind in xrange(n_classes):
            Xg = X[y == ind, :]
            meang = Xg.mean(0)
            self.means_.append(np.asarray(meang))
        if self.print_timing: print 'KernelFisher.fit: means took', time.time() - ts


        ts = time.time()
        PI_diag = np.diag( 1.0*n_samples_perclass )                                        # shape(PI_diag) = n_classes x n_classes
        PI_inv = np.diag( 1.0 / (1.0*n_samples_perclass) )                                 # shape(PI_inv) = n_classes x n_classes
        PI_sqrt_inv = np.sqrt( PI_inv )                                                    # shape(PI_sqrt_inv) = n_classes x n_classes
        #H = np.identity(n_samples) - (1.0/(1.0*n_samples))*np.ones((n_samples,n_samples))
        E=np.zeros( (n_samples,n_classes) )                                                # shape(E) = n_samples x n_classes
        E[[range(n_samples),y]]=1
        E_PIsi = np.dot(E, PI_sqrt_inv)
        One_minus_E_Pi_Et = np.identity(n_samples) - np.inner( E, np.inner(PI_diag, E).T ) # shape(One_minus_E_Pi_Et) = n_samples x n_samples
        if self.print_timing: print 'KernelFisher.fit: matrices took', time.time() - ts


        #####################################################################################################################
        #C = HKH = (I - 1/n 1x1.T) K (I - 1/n 1x1.T) = (K -  1xK_mean.T) * (I - 1/n 1x1.T)
        #        = K - K_meanx1.T - 1xK_mean.T + K_allmean 1x1
        #  --> which is the same as what self._centerer.fit_transform(C) performs
        #
        # if use_total_scatter=False,
        #      then using Sw which is (1-E*Pi*E.T)K(1-E*Pi*E.T)
        #####################################################################################################################
        ts = time.time()
        C = self._get_kernel(X) 
        K_mean = np.sum(C, axis=1) / (1.0*C.shape[1])

        if self.use_total_scatter:
            C = self._centerer.fit_transform(C)
        else:
            C = np.inner( One_minus_E_Pi_Et, np.inner(C, One_minus_E_Pi_Et).T)
        if self.print_timing: print 'KernelFisher.fit: Kernel Calculation took', time.time() - ts


        ts = time.time()
        Uc, Sc, Utc, Sc_norm = self.condensed_svd( C, self.tol, store_singular_vals=True )
        if self.print_timing: print 'KernelFisher.fit: Uc, Sc, Utc took', time.time() - ts


        ts = time.time()
        #scale up sigma to appropriate range of singular values
        reg_factor = self.sigma_sqrd * Sc_norm 
        St_reg_inv = np.inner( Uc, np.inner(np.diag(1.0/(Sc + reg_factor)), Utc.T).T )   
        if self.print_timing: print 'KernelFisher.fit: St_reg_inv took', time.time() - ts

        ts = time.time()
        R = np.inner(E_PIsi.T, np.inner(C, np.inner( St_reg_inv, E_PIsi.T ).T ).T )
        if self.print_timing: print 'KernelFisher.fit: R took', time.time() - ts


        ts = time.time()
        Vr, Lr, Vtr, Lr_norm =  self.condensed_svd( R, tol=1e-6 )                
        if self.print_timing: print 'KernelFisher.fit: Vr, Lr, Vtr took', time.time() - ts


        ts = time.time()
        #####################################################################################################################
        #This capital Z is Upsilon.T * H from equation (22)
        #####################################################################################################################
        #Z = np.inner( np.diag(1.0 / np.sqrt(Lr)), np.inner(Vtr, np.inner(E_PIsi.T, np.inner(C, St_reg_inv.T ).T ).T ).T )
        Z = np.inner( np.inner( np.inner( np.inner( np.diag(1.0 / np.sqrt(Lr)), Vtr.T), E_PIsi), C.T), St_reg_inv)
开发者ID:andrewjohnlowe,项目名称:JetImages,代码行数:70,代码来源:fisher.py

示例5: ALIGNFSOFT

# 需要导入模块: from sklearn.preprocessing import KernelCenterer [as 别名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 别名]
def ALIGNFSOFT(kernel_list, ky, y, test_fold, tags):
    # Find best upper bound in CV and train on whole data
    # Reutrn the weights 
    y = y.ravel()
    n_km = len(kernel_list)

    tag = np.array(tags)
    tag = tag[tag!=test_fold]
    remain_fold = np.unique(tag).tolist()
    all_best_c = []
    for validate_fold in remain_fold:
        train = tag != validate_fold
        validate = tag == validate_fold
        # train on train fold ,validate on validate_fold.
        # Do not use test fold. test fold used in outter cv
        ky_train = ky[np.ix_(train, train)]
        y_train = y[train]
        y_validate = y[validate]
        train_km_list = []
        validate_km_list = []
        n_train = len(y_train)
        n_validate = len(y_validate)

        for km in kernel_list:
            kc = KernelCenterer()
            train_km = km[np.ix_(train, train)]
            validate_km = km[np.ix_(validate, train)]
            # center train and validate kernels                      
            train_km_c = kc.fit_transform(train_km)
            train_km_list.append(train_km_c)
            validate_km_c = kc.transform(validate_km)
            validate_km_list.append(validate_km_c)

        # if the label is too biased, SVM CV will fail, just return ALIGNF solution
        if np.sum(y_train==1) > n_train-3 or np.sum(y_train==-1) > n_train-3:
            return 1e8, ALIGNFSLACK(train_km_list, ky_train, 1e8) 

        Cs = np.exp2(np.array(range(-9,7))).tolist() + [1e8]
        W = np.zeros((n_km, len(Cs)))
        for i in xrange(len(Cs)):
            W[:,i] = ALIGNFSLACK(train_km_list, ky_train, Cs[i])

        W = W / np.linalg.norm(W, 2, 0)
        f1 = np.zeros(len(Cs))
        for i in xrange(len(Cs)):
            train_ckm = np.zeros((n_train,n_train))
            validate_ckm = np.zeros((n_validate,n_train))
            w = W[:,i]
            for j in xrange(n_km):
                train_ckm += w[j]*train_km_list[j]
                validate_ckm += w[j]*validate_km_list[j]
            f1[i] = svm(train_ckm, validate_ckm, y_train, y_validate)
        # return the first maximum
        maxind = np.argmax(f1)
        bestC = Cs[maxind]
        all_best_c.append(bestC)
        print f1
        print "..Best C is", bestC

    bestC = np.mean(all_best_c)
    print "..Take the average best upper bound", bestC
    # use the best upper bound to solve ALIGNFSOFT
    return bestC, ALIGNFSLACK(kernel_list, ky, bestC)    
开发者ID:aalto-ics-kepaco,项目名称:softALIGNF,代码行数:65,代码来源:run_mkl.py

示例6: KernelPCA

# 需要导入模块: from sklearn.preprocessing import KernelCenterer [as 别名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 别名]

#.........这里部分代码省略.........
                 alpha=1.0, fit_inverse_transform=False, eigen_solver='auto',
                 tol=0, max_iter=None, remove_zero_eig=False):
        if fit_inverse_transform and kernel == 'precomputed':
            raise ValueError(
                "Cannot fit_inverse_transform with a precomputed kernel.")
        self.n_components = n_components
        self.kernel = kernel
        self.kernel_params = kernel_params
        self.gamma = gamma
        self.degree = degree
        self.coef0 = coef0
        self.alpha = alpha
        self.fit_inverse_transform = fit_inverse_transform
        self.eigen_solver = eigen_solver
        self.remove_zero_eig = remove_zero_eig
        self.tol = tol
        self.max_iter = max_iter
        self._centerer = KernelCenterer()

    @property
    def _pairwise(self):
        return self.kernel == "precomputed"

    def _get_kernel(self, X, Y=None):
        if callable(self.kernel):
            params = self.kernel_params or {}
        else:
            params = {"gamma": self.gamma,
                      "degree": self.degree,
                      "coef0": self.coef0}
        return pairwise_kernels(X, Y, metric=self.kernel,
                                filter_params=True, **params)

    def _fit_transform(self, K):
        """ Fit's using kernel K"""
        # center kernel
        K = self._centerer.fit_transform(K)

        if self.n_components is None:
            n_components = K.shape[0]
        else:
            n_components = min(K.shape[0], self.n_components)

        # compute eigenvectors
        if self.eigen_solver == 'auto':
            if K.shape[0] > 200 and n_components < 10:
                eigen_solver = 'arpack'
            else:
                eigen_solver = 'dense'
        else:
            eigen_solver = self.eigen_solver

        if eigen_solver == 'dense':
            self.lambdas_, self.alphas_ = linalg.eigh(
                K, eigvals=(K.shape[0] - n_components, K.shape[0] - 1))
            self.evals_, self.evecs_ = linalg.eigh(K)

        elif eigen_solver == 'arpack':
            self.lambdas_, self.alphas_ = eigsh(K, n_components,
                                                which="LA",
                                                tol=self.tol,
                                                maxiter=self.max_iter)

        # sort eigenvectors in descending order
        indices = self.lambdas_.argsort()[::-1]
        self.lambdas_ = self.lambdas_[indices]
开发者ID:rohanp,项目名称:dimensionality_reduction_techniques,代码行数:70,代码来源:kernel_pca.py

示例7: fit

# 需要导入模块: from sklearn.preprocessing import KernelCenterer [as 别名]
# 或者: from sklearn.preprocessing.KernelCenterer import fit_transform [as 别名]
    def fit(self, X, Y):
        """Fit the KCCA model with two views represented by kernels X and Y.

        Parameters
        ----------
        X : array_like, shape = (n_samples, n_features) for data matrix
            or shape = (n_samples, n_samples) for kernel matrix.
            When both X and Y are kernel matrix, the kernel parameter
            should be set to 'precomputed'.
            It is considered to be one view of the data.

        Y : array_like, shape = (n_samples, n_features) for data matrix
            or shape = (n_samples, n_samples) for kernel matrix.
            When both X and Y are kernel matrix, the kernel parameter
            should be set to 'precomputed'.
            It is considered to be another view of the data.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        check_consistent_length(X, Y)
        X = check_array(X, dtype=np.float, copy=self.copy)
        Y = check_array(Y, dtype=np.float, copy=self.copy, ensure_2d=False)
        if Y.ndim == 1:
            Y = Y.reshape(-1,1)

        n = X.shape[0]
        p = X.shape[1]
        q = Y.shape[1]

        if self.n_components < 1 or self.n_components > n:
            raise ValueError('Invalid number of components: %d' %
                             self.n_components)
        if self.eigen_solver not in ("auto", "dense", "arpack"):
            raise ValueError("Got eigen_solver %s when only 'auto', "
                             "'dense' and 'arparck' are valid" %
                             self.algorithm)
        if self.kernel == 'precomputed' and (p != n or q != n):
            raise ValueError('Invalid kernel matrices dimension')
        if not self.pgso and (self.kapa <= 0 or self.kapa >= 1):
            raise ValueError('kapa should be in (0, 1) when pgso=False')
        if self.pgso and (self.kapa < 0 or self.kapa > 1):
            raise ValueError('kapa should be in [0, 1] when pgso=True')

        KX = self._get_kernel(X)
        KY = self._get_kernel(Y)

        if self.center:
            kc = KernelCenterer()
            self.KXc_ = kc.fit_transform(KX)
            self.KYc_ = kc.fit_transform(KY)
        else:
            self.KXc_ = KX
            self.KYc_ = KY

        if self.pgso:  # use PGSO to decompose kernel matrix
            self._fit_pgso(self.KXc_, self.KYc_)
        else:
            self._fit(self.KXc_, self.KYc_)
        return self
开发者ID:icdishb,项目名称:scikit-learn,代码行数:64,代码来源:kernel_cca.py


注:本文中的sklearn.preprocessing.KernelCenterer.fit_transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。