当前位置: 首页>>代码示例>>Python>>正文


Python KernelDensity.score方法代码示例

本文整理汇总了Python中sklearn.neighbors.kde.KernelDensity.score方法的典型用法代码示例。如果您正苦于以下问题:Python KernelDensity.score方法的具体用法?Python KernelDensity.score怎么用?Python KernelDensity.score使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.neighbors.kde.KernelDensity的用法示例。


在下文中一共展示了KernelDensity.score方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: estimate_distribution

# 需要导入模块: from sklearn.neighbors.kde import KernelDensity [as 别名]
# 或者: from sklearn.neighbors.kde.KernelDensity import score [as 别名]
def estimate_distribution(samples, h=0.1, n_points=100):
	kde = KernelDensity(bandwidth=h)
	samples = samples[:, np.newaxis]
	kde.fit(samples)
	xs = np.linspace(-1.0, 1.0, n_points)
	ys = [np.exp(kde.score([x])) for x in xs]
	return xs, ys
开发者ID:rnowling,项目名称:pop-gen-models,代码行数:9,代码来源:plot_sampled_phis.py

示例2: PCA

# 需要导入模块: from sklearn.neighbors.kde import KernelDensity [as 别名]
# 或者: from sklearn.neighbors.kde.KernelDensity import score [as 别名]
print msa_vectors.shape

#PCA
pca = PCA(n_components=20)
pca.fit(msa_vectors[1000:])
a_samps_pca = pca.transform(msa_vectors[1000:])
b_samps_pca = pca.transform(msa_vectors[:1000])
print a_samps_pca.shape

#KDE
# for bw in [.01, .1, 1., 10.]:
for bw in [ 1.]:

	kde = KernelDensity(kernel='gaussian', bandwidth=bw).fit(a_samps_pca)
	# density_train = kde.score_samples(msa_vectors)
	print bw, kde.score(b_samps_pca)

densities = kde.score_samples(b_samps_pca)
# densities = np.ones(1000)

#Scale densities to betw 0 and 1
min_density = np.min(densities)
densities = densities - min_density + 1.

weights = np.reciprocal(densities)

max_weights = np.max(weights)
weights = weights / max_weights

print np.max(weights)
print np.mean(weights)
开发者ID:chriscremer,项目名称:Other_Code,代码行数:33,代码来源:mutual_info_calc.py

示例3: expanduser

# 需要导入模块: from sklearn.neighbors.kde import KernelDensity [as 别名]
# 或者: from sklearn.neighbors.kde.KernelDensity import score [as 别名]
from os.path import expanduser
home = expanduser("~")

from sklearn.neighbors.kde import KernelDensity




#RASH
L = 166
msa_file = home + '/Documents/Protein_data/RASH/RASH_HUMAN2_833a6535-26d0-4c47-8463-7970dae27a32_evfold_result/alignment/RASH_HUMAN2_RASH_HUMAN2_jackhmmer_e-10_m30_complete_run.fa'
msa, n_aa = tools.convert_msa(L, msa_file)
print len(msa), len(msa[0]), n_aa



msa_vectors = []
for samp in range(2000):
	msa_vectors.append(np.ndarray.flatten(tools.convert_samp_to_one_hot(msa[samp], n_aa)))


msa_vectors = np.array(msa_vectors)
print msa_vectors.shape

for bw in [.01, .1, 1., 10.]:

	kde = KernelDensity(kernel='gaussian', bandwidth=bw).fit(msa_vectors[1000:])
	# density_train = kde.score_samples(msa_vectors)
	print bw, kde.score(msa_vectors[:1000])

开发者ID:chriscremer,项目名称:Other_Code,代码行数:31,代码来源:density_estimation.py


注:本文中的sklearn.neighbors.kde.KernelDensity.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。