当前位置: 首页>>代码示例>>Python>>正文


Python KNeighborsClassifier.kneighbors方法代码示例

本文整理汇总了Python中sklearn.neighbors.classification.KNeighborsClassifier.kneighbors方法的典型用法代码示例。如果您正苦于以下问题:Python KNeighborsClassifier.kneighbors方法的具体用法?Python KNeighborsClassifier.kneighbors怎么用?Python KNeighborsClassifier.kneighbors使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.neighbors.classification.KNeighborsClassifier的用法示例。


在下文中一共展示了KNeighborsClassifier.kneighbors方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: DCS

# 需要导入模块: from sklearn.neighbors.classification import KNeighborsClassifier [as 别名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 别名]
class DCS(object):

    @abstractmethod
    def select(self, ensemble, x):
        pass

    def __init__(self, Xval, yval, K=5, weighted=False, knn=None):
        self.Xval = Xval
        self.yval = yval
        self.K = K

        if knn == None:
            self.knn = KNeighborsClassifier(n_neighbors=K, algorithm='brute')
        else:
            self.knn = knn

        self.knn.fit(Xval, yval)
        self.weighted = weighted


    def get_neighbors(self, x, return_distance=False):
        # obtain the K nearest neighbors of test sample in the validation set
        if not return_distance:
            [idx] = self.knn.kneighbors(x, 
                    return_distance=return_distance)
        else:
            [dists], [idx] = self.knn.kneighbors(x, 
                    return_distance=return_distance)
        X_nn = self.Xval[idx] # k neighbors
        y_nn = self.yval[idx] # k neighbors target

        if return_distance:
            return X_nn, y_nn, dists
        else:
            return X_nn, y_nn
开发者ID:guilhermepaiva,项目名称:brew,代码行数:37,代码来源:base.py

示例2: _main_loop

# 需要导入模块: from sklearn.neighbors.classification import KNeighborsClassifier [as 别名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 别名]
    def _main_loop(self):
        exit_count = 0
        knn = KNeighborsClassifier(n_neighbors = 1, algorithm='brute')
        while exit_count < len(self.groups):
            index, exit_count = 0, 0
            while index < len(self.groups):

                group = self.groups[index]
                reps_x = np.asarray([g.rep_x for g in self.groups])
                reps_y = np.asarray([g.label for g in self.groups])
                knn.fit(reps_x, reps_y)
                
                nn_idx = knn.kneighbors(group.X, n_neighbors=1, return_distance=False)
                nn_idx = nn_idx.T[0]
                mask = nn_idx == index
                
                # if all are correctly classified
                if not (False in mask):
                    exit_count = exit_count + 1
                
                # if all are misclasified
                elif not (group.label in reps_y[nn_idx]):
                    pca = PCA(n_components=1)
                    pca.fit(group.X)
                    # maybe use a 'for' instead of creating array
                    d = pca.transform(reps_x[index])
                    dis = [pca.transform(inst)[0] for inst in group.X]
                    mask_split = (dis < d).flatten()
                    
                    new_X = group.X[mask_split]
                    self.groups.append(_Group(new_X, group.label))
                    group.X = group.X[~mask_split]
                
                elif (reps_y[nn_idx] == group.label).all() and (nn_idx != index).any():
                    mask_mv = nn_idx != index
                    index_mv = np.asarray(range(len(group)))[mask_mv]
                    X_mv = group.remove_instances(index_mv)
                    G_mv = nn_idx[mask_mv]                        

                    for x, g in zip(X_mv, G_mv):
                        self.groups[g].add_instances([x])

                elif (reps_y[nn_idx] != group.label).sum()/float(len(group)) > self.r_mis:
                    mask_mv = reps_y[nn_idx] != group.label
                    new_X = group.X[mask_mv]
                    self.groups.append(_Group(new_X, group.label))
                    group.X = group.X[~mask_mv]
                else:
                   exit_count = exit_count + 1

                if len(group) == 0:
                    self.groups.remove(group)
                else:
                    index = index + 1

                for g in self.groups:
                    g.update_all()

        return self.groups                     
开发者ID:antonlarin,项目名称:scikit-protopy,代码行数:61,代码来源:sgp.py

示例3: index_nearest_neighbor

# 需要导入模块: from sklearn.neighbors.classification import KNeighborsClassifier [as 别名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 别名]
    def index_nearest_neighbor(self, S, X, y):
        classifier = KNeighborsClassifier(n_neighbors=1)

        U = []
        S_mask = np.array(S, dtype=bool, copy=True)
        indexs = np.asarray(range(len(y)))[S_mask]
        X_tra, y_tra = X[S_mask], y[S_mask]

        for i in range(len(y)):
            real_indexes = np.asarray(range(len(y)))[S_mask]
            X_tra, y_tra = X[S_mask], y[S_mask]
            #print len(X_tra), len(y_tra)
            classifier.fit(X_tra, y_tra)
            [[index]] = classifier.kneighbors(X[i], return_distance=False)
            U = U + [real_indexes[index]]

        return U
开发者ID:dvro,项目名称:scikit-protopy,代码行数:19,代码来源:ssma.py

示例4: SGP2

# 需要导入模块: from sklearn.neighbors.classification import KNeighborsClassifier [as 别名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 别名]
class SGP2(SGP):
    """Self-Generating Prototypes 2

    The Self-Generating Prototypes 2 is the second version of the
    Self-Generating Prototypes algorithm.
    It has a higher generalization power, including the procedures
    merge and pruning.

    Parameters
    ----------
    r_min: float, optional (default = 0.0)
        Determine the minimum size of a cluster [0.00, 0.20]

    r_mis: float, optional (default = 0.0)
        Determine the error tolerance before split a group

    Attributes
    ----------
    `X_` : array-like, shape = [indeterminated, n_features]
        Selected prototypes.

    `y_` : array-like, shape = [indeterminated]
        Labels of the selected prototypes.

    `reduction_` : float, percentual of reduction.

    Examples
    --------
    >>> from protopy.generation.sgp import SGP2
    >>> import numpy as np
    >>> X = [np.asarray(range(1,13)) + np.asarray([0.1,0,-0.1,0.1,0,-0.1,0.1,-0.1,0.1,-0.1,0.1,-0.1])]
    >>> X = np.asarray(X).T
    >>> y = np.array([1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1])
    >>> sgp2 = SGP2()
    >>> sgp2.fit(X, y)
    SGP2(r_min=0.0, r_mis=0.0)
    >>> print sgp2.reduction_
    0.5

    See also
    --------
    protopy.generation.SGP: self-generating prototypes
    protopy.generation.sgp.ASGP: adaptive self-generating prototypes

    References
    ----------
    Hatem A. Fayed, Sherif R Hashem, and Amir F Atiya. Self-generating prototypes
    for pattern classification. Pattern Recognition, 40(5):1498–1509, 2007.
    """
    def __init__(self, r_min=0.0, r_mis=0.0):
        self.groups = None
        self.r_min = r_min
        self.r_mis = r_mis
        self.n_neighbors = 1
        self.classifier = None
        self.groups = None


    def reduce_data(self, X, y):
        X, y = check_X_y(X, y, accept_sparse="csr")

        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors)
        if self.classifier.n_neighbors != self.n_neighbors:
            self.classifier.n_neighbors = self.n_neighbors

        classes = np.unique(y)
        self.classes_ = classes

        # loading inicial groups
        self.groups = []
        for label in classes:
            mask = y == label
            self.groups = self.groups + [_Group(X[mask], label)]

        self._main_loop()
        self._generalization_step()
        self._merge()
        self._pruning()
        self.X_ = np.asarray([g.rep_x for g in self.groups])
        self.y_ = np.asarray([g.label for g in self.groups])
        self.reduction_ = 1.0 - float(len(self.y_))/len(y)
        return self.X_, self.y_


    def _merge(self):

        if len(self.groups) < 2:
            return self.groups

        merged = False
        for group in self.groups:
            reps_x = np.asarray([g.rep_x for g in self.groups])
            reps_y = np.asarray([g.label for g in self.groups])
            self.classifier.fit(reps_x, reps_y)

            nn2_idx = self.classifier.kneighbors(group.X, n_neighbors=2, return_distance=False)
            nn2_idx = nn2_idx.T[1]

            # could use a threshold
#.........这里部分代码省略.........
开发者ID:antonlarin,项目名称:scikit-protopy,代码行数:103,代码来源:sgp.py

示例5: TomekLinks

# 需要导入模块: from sklearn.neighbors.classification import KNeighborsClassifier [as 别名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 别名]
class TomekLinks(InstanceReductionMixin):

    """Tomek Links.

    The Tomek Links algorithm removes a pair instances that
    forms a Tomek Link. This techniques removes instances in
    the decision region.

    Parameters
    ----------
    n_neighbors : int, optional (default = 3)
        Number of neighbors to use by default in the classification (only).
        The Tomek Links uses only n_neighbors=1 in the reduction.

    keep_class : int, optional (default = None)
        Label of the class to not be removed in the tomek links. If None,
        it removes all nodes of the links.

    Attributes
    ----------
    `X_` : array-like, shape = [indeterminated, n_features]
        Selected prototypes.

    `y_` : array-like, shape = [indeterminated]
        Labels of the selected prototypes.

    `reduction_` : float, percentual of reduction.

    Examples
    --------

    >>> from protopy.selection.tomek_links import TomekLinks
    >>> import numpy as np
    >>> X = np.array([[0],[1],[2.1],[2.9],[4],[5],[6],[7.1],[7.9],[9]])
    >>> y = np.array([1,1,2,1,2,2,2,1,2,2])
    >>> tl = TomekLinks()
    >>> tl.fit(X, y)
    TomekLinks(keep_class=None)
    >>> print tl.predict([[2.5],[7.5]])
    [1, 2]
    >>> print tl.reduction_
    0.4

    See also
    --------
    protopy.selection.enn.ENN: edited nearest neighbor

    References
    ----------
    I. Tomek, “Two modifications of cnn,” IEEE Transactions on Systems,
    Man and Cybernetics, vol. SMC-6, pp. 769–772, 1976.

    """

    def __init__(self, n_neighbors=3, keep_class=None):
        self.n_neighbors = n_neighbors
        self.classifier = None
        self.keep_class = keep_class


    def reduce_data(self, X, y):
        if self.classifier == None:
            self.classifier = KNeighborsClassifier(n_neighbors=self.n_neighbors, algorithm='brute')
        if self.classifier.n_neighbors != self.n_neighbors:
            self.classifier.n_neighbors = self.n_neighbors

        X, y = check_arrays(X, y, sparse_format="csr")

        classes = np.unique(y)
        self.classes_ = classes
        self.classifier.fit(X, y)
        nn_idx = self.classifier.kneighbors(X, n_neighbors=2, return_distance=False)
        nn_idx = nn_idx.T[1]

        mask = [nn_idx[nn_idx[index]] == index and y[index] != y[nn_idx[index]] for index in xrange(nn_idx.shape[0])]
        mask = ~np.asarray(mask) 
        if self.keep_class != None and self.keep_class in self.classes_:
            mask[y==self.keep_class] = True

        self.X_ = np.asarray(X[mask])
        self.y_ = np.asarray(y[mask])
        self.reduction_ = 1.0 - float(len(self.y_)) / len(y)

        return self.X_, self.y_
开发者ID:guilhermepaiva,项目名称:scikit-protopy,代码行数:86,代码来源:tomek_links.py

示例6: SSMA

# 需要导入模块: from sklearn.neighbors.classification import KNeighborsClassifier [as 别名]
# 或者: from sklearn.neighbors.classification.KNeighborsClassifier import kneighbors [as 别名]

#.........这里部分代码省略.........
    def fitness_gain(self, gain, n):
        return self.alpha * (float(gain)/n) + (1 - self.alpha) * (1.0 / n)


    def update_threshold(self, X, y):
        best_index = np.argmax(self.evaluations)
        chromosome = self.chromosomes[best_index]

        best_ac = self.accuracy(chromosome, X, y)
        best_rd = 1.0 - float(sum(chromosome))/len(y)

        if best_ac <= self.best_chromosome_ac:
            self.threshold = self.threshold + 1
        if best_rd <= self.best_chromosome_rd:
            self.threshold = self.threshold - 1

        self.best_chromosome_ac = best_ac
        self.best_chromosome_rd = best_rd


    def index_nearest_neighbor(self, S, X, y):
        classifier = KNeighborsClassifier(n_neighbors=1)

        U = []
        S_mask = np.array(S, dtype=bool, copy=True)
        indexs = np.asarray(range(len(y)))[S_mask]
        X_tra, y_tra = X[S_mask], y[S_mask]

        for i in range(len(y)):
            real_indexes = np.asarray(range(len(y)))[S_mask]
            X_tra, y_tra = X[S_mask], y[S_mask]
            #print len(X_tra), len(y_tra)
            classifier.fit(X_tra, y_tra)
            [[index]] = classifier.kneighbors(X[i], return_distance=False)
            U = U + [real_indexes[index]]

        return U
            

    def memetic_looper(self, S, R):
        c = 0
        for i in range(len(S)):
            if S[i] == 1 and i not in R:
                c = c + 1
                if c == 2:
                    return True

        return False

    def memetic_select_j(self, S, R):
        indexs = []
        for i in range(len(S)):
            if i not in R and S[i] == 1:
                indexs.append(i)
        # if list is empty wlil return error
        return np.random.choice(indexs)


    def generate_population(self, X, y):
        self.chromosomes = [[np.random.choice([0,1]) for i in range(len(y))]
                            for c in range(self.chromosomes_count)]
        self.evaluations = [self.fitness(c, X, y) for c in self.chromosomes]

        self.update_threshold(X, y)
        
开发者ID:dvro,项目名称:scikit-protopy,代码行数:68,代码来源:ssma.py


注:本文中的sklearn.neighbors.classification.KNeighborsClassifier.kneighbors方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。