当前位置: 首页>>代码示例>>Python>>正文


Python MultiOutputRegressor.score方法代码示例

本文整理汇总了Python中sklearn.multioutput.MultiOutputRegressor.score方法的典型用法代码示例。如果您正苦于以下问题:Python MultiOutputRegressor.score方法的具体用法?Python MultiOutputRegressor.score怎么用?Python MultiOutputRegressor.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.multioutput.MultiOutputRegressor的用法示例。


在下文中一共展示了MultiOutputRegressor.score方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: RandomForestRegressor

# 需要导入模块: from sklearn.multioutput import MultiOutputRegressor [as 别名]
# 或者: from sklearn.multioutput.MultiOutputRegressor import score [as 别名]
                                                          random_state=0))
regr_multirf.fit(X_train, y_train)

regr_rf = RandomForestRegressor(max_depth=max_depth, random_state=2)
regr_rf.fit(X_train, y_train)

# Predict on new data
y_multirf = regr_multirf.predict(X_test)
y_rf = regr_rf.predict(X_test)

# Plot the results
plt.figure()
s = 50
a = 0.4
plt.scatter(y_test[:, 0], y_test[:, 1], edgecolor='k',
            c="navy", s=s, marker="s", alpha=a, label="Data")
plt.scatter(y_multirf[:, 0], y_multirf[:, 1], edgecolor='k',
            c="cornflowerblue", s=s, alpha=a,
            label="Multi RF score=%.2f" % regr_multirf.score(X_test, y_test))
plt.scatter(y_rf[:, 0], y_rf[:, 1], edgecolor='k',
            c="c", s=s, marker="^", alpha=a,
            label="RF score=%.2f" % regr_rf.score(X_test, y_test))
plt.xlim([-6, 6])
plt.ylim([-6, 6])
plt.xlabel("target 1")
plt.ylabel("target 2")
plt.title("Comparing random forests and the multi-output meta estimator")
plt.legend()
# plt.show()
pltshow(plt)
开发者ID:,项目名称:,代码行数:32,代码来源:


注:本文中的sklearn.multioutput.MultiOutputRegressor.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。