当前位置: 首页>>代码示例>>Python>>正文


Python MultiOutputClassifier.partial_fit方法代码示例

本文整理汇总了Python中sklearn.multioutput.MultiOutputClassifier.partial_fit方法的典型用法代码示例。如果您正苦于以下问题:Python MultiOutputClassifier.partial_fit方法的具体用法?Python MultiOutputClassifier.partial_fit怎么用?Python MultiOutputClassifier.partial_fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.multioutput.MultiOutputClassifier的用法示例。


在下文中一共展示了MultiOutputClassifier.partial_fit方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_multi_output_classification_partial_fit

# 需要导入模块: from sklearn.multioutput import MultiOutputClassifier [as 别名]
# 或者: from sklearn.multioutput.MultiOutputClassifier import partial_fit [as 别名]
def test_multi_output_classification_partial_fit():
    # test if multi_target initializes correctly with base estimator and fit
    # assert predictions work as expected for predict

    sgd_linear_clf = SGDClassifier(loss='log', random_state=1)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)

    # train the multi_target_linear and also get the predictions.
    half_index = X.shape[0] // 2
    multi_target_linear.partial_fit(
        X[:half_index], y[:half_index], classes=classes)

    first_predictions = multi_target_linear.predict(X)
    assert_equal((n_samples, n_outputs), first_predictions.shape)

    multi_target_linear.partial_fit(X[half_index:], y[half_index:])
    second_predictions = multi_target_linear.predict(X)
    assert_equal((n_samples, n_outputs), second_predictions.shape)

    # train the linear classification with each column and assert that
    # predictions are equal after first partial_fit and second partial_fit
    for i in range(3):
        # create a clone with the same state
        sgd_linear_clf = clone(sgd_linear_clf)
        sgd_linear_clf.partial_fit(
            X[:half_index], y[:half_index, i], classes=classes[i])
        assert_array_equal(sgd_linear_clf.predict(X), first_predictions[:, i])
        sgd_linear_clf.partial_fit(X[half_index:], y[half_index:, i])
        assert_array_equal(sgd_linear_clf.predict(X), second_predictions[:, i])
开发者ID:MechCoder,项目名称:scikit-learn,代码行数:31,代码来源:test_multioutput.py

示例2: test_multi_output_classification_partial_fit_parallelism

# 需要导入模块: from sklearn.multioutput import MultiOutputClassifier [as 别名]
# 或者: from sklearn.multioutput.MultiOutputClassifier import partial_fit [as 别名]
def test_multi_output_classification_partial_fit_parallelism():
    sgd_linear_clf = SGDClassifier(loss='log', random_state=1)
    mor = MultiOutputClassifier(sgd_linear_clf, n_jobs=-1)
    mor.partial_fit(X, y, classes)
    est1 = mor.estimators_[0]
    mor.partial_fit(X, y)
    est2 = mor.estimators_[0]
    # parallelism requires this to be the case for a sane implementation
    assert_false(est1 is est2)
开发者ID:MechCoder,项目名称:scikit-learn,代码行数:11,代码来源:test_multioutput.py

示例3: test_multi_output_classification_partial_fit_parallelism

# 需要导入模块: from sklearn.multioutput import MultiOutputClassifier [as 别名]
# 或者: from sklearn.multioutput.MultiOutputClassifier import partial_fit [as 别名]
def test_multi_output_classification_partial_fit_parallelism():
    sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5)
    mor = MultiOutputClassifier(sgd_linear_clf, n_jobs=4)
    mor.partial_fit(X, y, classes)
    est1 = mor.estimators_[0]
    mor.partial_fit(X, y)
    est2 = mor.estimators_[0]
    if cpu_count() > 1:
        # parallelism requires this to be the case for a sane implementation
        assert est1 is not est2
开发者ID:kevin-coder,项目名称:scikit-learn-fork,代码行数:12,代码来源:test_multioutput.py


注:本文中的sklearn.multioutput.MultiOutputClassifier.partial_fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。