当前位置: 首页>>代码示例>>Python>>正文


Python RandomizedSearchCV.predict方法代码示例

本文整理汇总了Python中sklearn.model_selection.RandomizedSearchCV.predict方法的典型用法代码示例。如果您正苦于以下问题:Python RandomizedSearchCV.predict方法的具体用法?Python RandomizedSearchCV.predict怎么用?Python RandomizedSearchCV.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.model_selection.RandomizedSearchCV的用法示例。


在下文中一共展示了RandomizedSearchCV.predict方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_large_grid

# 需要导入模块: from sklearn.model_selection import RandomizedSearchCV [as 别名]
# 或者: from sklearn.model_selection.RandomizedSearchCV import predict [as 别名]
    def test_large_grid():
        """In this test, we purposely overfit a RandomForest to completely random data
        in order to assert that the test error will far supercede the train error.
        """

        if not SK18:
            custom_cv = KFold(n=y_train.shape[0], n_folds=3, shuffle=True, random_state=42)
        else:
            custom_cv = KFold(n_splits=3, shuffle=True, random_state=42)

        # define the pipe
        pipe = Pipeline([
            ('scaler', SelectiveScaler()),
            ('pca', SelectivePCA(weight=True)),
            ('rf', RandomForestClassifier(random_state=42))
        ])

        # define hyper parameters
        hp = {
            'scaler__scaler': [StandardScaler(), RobustScaler(), MinMaxScaler()],
            'pca__whiten': [True, False],
            'pca__weight': [True, False],
            'pca__n_components': uniform(0.75, 0.15),
            'rf__n_estimators': randint(5, 10),
            'rf__max_depth': randint(5, 15)
        }

        # define the grid
        grid = RandomizedSearchCV(pipe, hp, n_iter=2, scoring='accuracy', n_jobs=1, cv=custom_cv, random_state=42)

        # this will fail because we haven't fit yet
        assert_fails(grid.score, (ValueError, AttributeError), X_train, y_train)

        # fit the grid
        grid.fit(X_train, y_train)

        # score for coverage -- this might warn...
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            grid.score(X_train, y_train)

        # coverage:
        assert grid._estimator_type == 'classifier'

        # get predictions
        tr_pred, te_pred = grid.predict(X_train), grid.predict(X_test)

        # evaluate score (SHOULD be better than random...)
        accuracy_score(y_train, tr_pred), accuracy_score(y_test, te_pred)

        # grid score reports:
        # assert fails for bad percentile
        assert_fails(report_grid_score_detail, ValueError, **{'random_search': grid, 'percentile': 0.0})
        assert_fails(report_grid_score_detail, ValueError, **{'random_search': grid, 'percentile': 1.0})

        # assert fails for bad y_axis
        assert_fails(report_grid_score_detail, ValueError, **{'random_search': grid, 'y_axis': 'bad_axis'})

        # assert passes otherwise
        report_grid_score_detail(grid, charts=True, percentile=0.95)  # just ensure percentile works
开发者ID:tgsmith61591,项目名称:skutil,代码行数:62,代码来源:test_big.py

示例2: build_nn

# 需要导入模块: from sklearn.model_selection import RandomizedSearchCV [as 别名]
# 或者: from sklearn.model_selection.RandomizedSearchCV import predict [as 别名]
def build_nn(x_train, y_train, x_test, y_test, n_features):
    """
    Constructing a regression neural network model from input dataframe
    :param x_train: features dataframe for model training
    :param y_train: target dataframe for model training
    :param x_test: features dataframe for model testing
    :param y_test: target dataframe for model testing
    :return: None
    """
    net = NeuralNet(layers=[('input', InputLayer),
                            ('hidden0', DenseLayer),
                            ('hidden1', DenseLayer),
                            ('output', DenseLayer)],
                    input_shape=(None, x_train.shape[1]),  # Number of i/p nodes = number of columns in x
                    hidden0_num_units=15,
                    hidden0_nonlinearity=lasagne.nonlinearities.softmax,
                    hidden1_num_units=17,
                    hidden1_nonlinearity=lasagne.nonlinearities.softmax,
                    output_num_units=1,  # Number of o/p nodes = number of columns in y
                    output_nonlinearity=lasagne.nonlinearities.softmax,
                    max_epochs=100,
                    update_learning_rate=0.01,
                    regression=True,
                    verbose=0)

    # Finding the optimal set of params for each variable in the training of the neural network
    param_dist = {'hidden0_num_units':sp_randint(3, 30), 'hidden1_num_units':sp_randint(3, 30)}
    clf = RandomizedSearchCV(estimator=net, param_distributions=param_dist,
                             n_iter=15, n_jobs=-1)
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)

    # Mean absolute error regression loss
    mean_abs = sklearn.metrics.mean_absolute_error(y_test, y_pred)
    # Mean squared error regression loss
    mean_sq = sklearn.metrics.mean_squared_error(y_test, y_pred)
    # Median absolute error regression loss
    median_abs = sklearn.metrics.median_absolute_error(y_test, y_pred)
    # R^2 (coefficient of determination) regression score function
    r2 = sklearn.metrics.r2_score(y_test, y_pred)
    # Explained variance regression score function
    exp_var_score = sklearn.metrics.explained_variance_score(y_test, y_pred)

    with open('../trained_networks/nn_%d_data.pkl' % n_features, 'wb') as results:
        pickle.dump(clf, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(net, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(mean_abs, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(mean_sq, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(median_abs, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(r2, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(exp_var_score, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(y_pred, results, pickle.HIGHEST_PROTOCOL)

    return
开发者ID:pearlphilip,项目名称:USP-inhibition,代码行数:56,代码来源:models.py

示例3: test_randomgridsearch_slm

# 需要导入模块: from sklearn.model_selection import RandomizedSearchCV [as 别名]
# 或者: from sklearn.model_selection.RandomizedSearchCV import predict [as 别名]
def test_randomgridsearch_slm(make_gaus_data):

    X, y, Xs, ys = make_gaus_data

    slm = StandardLinearModel(LinearBasis(onescol=True))

    param_dict = {
        'var': [Parameter(1.0 / v, Positive()) for v in range(1, 6)]
    }
    estimator = RandomizedSearchCV(slm, param_dict, n_jobs=-1, n_iter=2)

    estimator.fit(X, y)
    Ey = estimator.predict(Xs)
    assert len(ys) == len(Ey)  # we just want to make sure this all runs
开发者ID:NICTA,项目名称:revrand,代码行数:16,代码来源:test_models.py

示例4: test_randomgridsearch_glm

# 需要导入模块: from sklearn.model_selection import RandomizedSearchCV [as 别名]
# 或者: from sklearn.model_selection.RandomizedSearchCV import predict [as 别名]
def test_randomgridsearch_glm(make_gaus_data):

    X, y, Xs, ys = make_gaus_data

    glm = GeneralizedLinearModel(Gaussian(), LinearBasis(onescol=True),
                                 random_state=1, maxiter=100)

    param_dict = {'batch_size': range(1, 11)}
    estimator = RandomizedSearchCV(glm, param_dict, verbose=1, n_jobs=-1,
                                   n_iter=2)

    estimator.fit(X, y)
    Ey = estimator.predict(Xs)
    assert len(ys) == len(Ey)  # we just want to make sure this all runs
开发者ID:NICTA,项目名称:revrand,代码行数:16,代码来源:test_models.py

示例5: test_pickle

# 需要导入模块: from sklearn.model_selection import RandomizedSearchCV [as 别名]
# 或者: from sklearn.model_selection.RandomizedSearchCV import predict [as 别名]
def test_pickle():
    # Test that a fit search can be pickled
    clf = MockClassifier()
    grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True)
    grid_search.fit(X, y)
    grid_search_pickled = pickle.loads(pickle.dumps(grid_search))
    assert_array_almost_equal(grid_search.predict(X),
                              grid_search_pickled.predict(X))

    random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]},
                                       refit=True, n_iter=3)
    random_search.fit(X, y)
    random_search_pickled = pickle.loads(pickle.dumps(random_search))
    assert_array_almost_equal(random_search.predict(X),
                              random_search_pickled.predict(X))
开发者ID:IsaacHaze,项目名称:scikit-learn,代码行数:17,代码来源:test_search.py

示例6: build_lasso

# 需要导入模块: from sklearn.model_selection import RandomizedSearchCV [as 别名]
# 或者: from sklearn.model_selection.RandomizedSearchCV import predict [as 别名]
def build_lasso(x_train, y_train, x_test, y_test, n_features):
    """
    Constructing a Lasso linear model with cross validation from input dataframe
    :param x_train: features dataframe for model training
    :param y_train: target dataframe for model training
    :param x_test: features dataframe for model testing
    :param y_test: target dataframe for model testing
    :return: None
    """

    model = Lasso(random_state=1)
    # Random state has int value for non-random sampling
    param_dist = {'alpha': np.arange( 0.0001, 1, 0.001 ).tolist()}
    clf = RandomizedSearchCV(estimator=model, param_distributions=param_dist,
                             n_iter=15, n_jobs=-1)
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)

    print(clf.best_params_, clf.best_score_)

    # Mean absolute error regression loss
    mean_abs = sklearn.metrics.mean_absolute_error(y_test, y_pred)
    # Mean squared error regression loss
    mean_sq = sklearn.metrics.mean_squared_error(y_test, y_pred)
    # Median absolute error regression loss
    median_abs = sklearn.metrics.median_absolute_error(y_test, y_pred)
    # R^2 (coefficient of determination) regression score function
    r2 = sklearn.metrics.r2_score(y_test, y_pred)
    # Explained variance regression score function
    exp_var_score = sklearn.metrics.explained_variance_score(y_test, y_pred)

    with open('../trained_networks/lasso_%d_data.pkl' % n_features, 'wb') as results:
        pickle.dump(clf, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(mean_abs, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(mean_sq, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(median_abs, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(r2, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(exp_var_score, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(y_pred, results, pickle.HIGHEST_PROTOCOL)

    return
开发者ID:pearlphilip,项目名称:USP-inhibition,代码行数:43,代码来源:models.py

示例7: build_tree

# 需要导入模块: from sklearn.model_selection import RandomizedSearchCV [as 别名]
# 或者: from sklearn.model_selection.RandomizedSearchCV import predict [as 别名]
def build_tree(x_train, y_train, x_test, y_test, n_features):
    """
    Constructing a decision trees regression model from input dataframe
    :param x_train: features dataframe for model training
    :param y_train: target dataframe for model training
    :param x_test: features dataframe for model testing
    :param y_test: target dataframe for model testing
    :return: None
    """
    model = DecisionTreeRegressor()
    param_dist = {'max_depth': sp_randint(1, 15),
                  'min_samples_split': sp_randint(2, 15)}
    clf = RandomizedSearchCV(estimator=model, param_distributions=param_dist,
                             n_iter=15, n_jobs=-1)
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)

    print(clf.best_params_, clf.best_score_)

    # Mean absolute error regression loss
    mean_abs = sklearn.metrics.mean_absolute_error(y_test, y_pred)
    # Mean squared error regression loss
    mean_sq = sklearn.metrics.mean_squared_error(y_test, y_pred)
    # Median absolute error regression loss
    median_abs = sklearn.metrics.median_absolute_error(y_test, y_pred)
    # R^2 (coefficient of determination) regression score function
    r2 = sklearn.metrics.r2_score(y_test, y_pred)
    # Explained variance regression score function
    exp_var_score = sklearn.metrics.explained_variance_score(y_test, y_pred)

    with open('../trained_networks/dt_%d_data.pkl' % n_features, 'wb') as results:
        pickle.dump(clf, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(mean_abs, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(mean_sq, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(median_abs, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(r2, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(exp_var_score, results, pickle.HIGHEST_PROTOCOL)
        pickle.dump(y_pred, results, pickle.HIGHEST_PROTOCOL)

    return
开发者ID:pearlphilip,项目名称:USP-inhibition,代码行数:42,代码来源:models.py

示例8: uniform

# 需要导入模块: from sklearn.model_selection import RandomizedSearchCV [as 别名]
# 或者: from sklearn.model_selection.RandomizedSearchCV import predict [as 别名]
        return tf.maximum(alpha * z, z, name=name)
    return parametrized_leaky_relu

param_distribs = {
        "n_neurons": [50, 100],
        "learning_rate": uniform(0.001, 0.01),
        "activation": [tf.nn.elu, leaky_relu(alpha=0.01)],
        }

rnd_search = RandomizedSearchCV(DNNClassifier(random_state=42), param_distribs,
                                n_iter=20, 
                                fit_params={"X_valid": X_valid1, "y_valid": y_valid1, "n_epochs": 30},
                                random_state=42, verbose=2)
rnd_search.fit(X_train1, y_train1)

y_pred1 = rnd_search.predict(X_test1)
print(accuracy_score(y_test1, y_pred1))

rnd_search.best_estimator_.save(modeldir + '/my_best_mnist_0_4')

dnn_clf = DNNClassifier(learning_rate=0.0011596625, batch_size=200)
dnn_clf.fit(X_train1, y_train1, n_epochs=30, X_valid = X_valid1, y_valid = y_valid1)
y_pred = dnn_clf.predict(X_test1)
accuracy_score(y_test1, y_pred)
y_pred_train = dnn_clf.predict(X_train1)
accuracy_score(y_train1, y_pred_train)

dnn_clf_bn = DNNClassifier(learning_rate=0.0011596625, batch_size=200, batch_norm_momentum=0.95)
dnn_clf_bn.fit(X_train1, y_train1, n_epochs=30, X_valid = X_valid1, y_valid = y_valid1)
y_pred = dnn_clf_bn.predict(X_test1)
accuracy_score(y_test1, y_pred)
开发者ID:anhualin,项目名称:MyLearning,代码行数:33,代码来源:chap11_8_1.py


注:本文中的sklearn.model_selection.RandomizedSearchCV.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。