当前位置: 首页>>代码示例>>Python>>正文


Python model_selection.cross_val_predict函数代码示例

本文整理汇总了Python中sklearn.model_selection.cross_val_predict函数的典型用法代码示例。如果您正苦于以下问题:Python cross_val_predict函数的具体用法?Python cross_val_predict怎么用?Python cross_val_predict使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了cross_val_predict函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Random_forest

def Random_forest(features,target,test_size_percent=0.2,cv_split=3):
    X_array = features.as_matrix()
    y_array = target.as_matrix()        
    model_rdf = RandomForestRegressor()
    X_train, X_test, y_train, y_test = train_test_split(X_array, y_array.T.squeeze(), test_size=test_size_percent, random_state=4)
    model_rdf.fit(X_train,y_train)
    test_prediction = model_rdf.predict(X_test)
    tscv = TimeSeriesSplit(cv_split)
    
    training_score = cross_val_score(model_rdf,X_train,y_train,cv=tscv.n_splits) 
    testing_score = cross_val_score(model_rdf,X_test,y_test,cv=tscv.n_splits)
    print"Cross-val Training score:", training_score.mean()
#    print"Cross-val Testing score:", testing_score.mean()
    training_predictions = cross_val_predict(model_rdf,X_train,y_train,cv=tscv.n_splits)
    testing_predictions = cross_val_predict(model_rdf,X_test,y_test,cv=tscv.n_splits)
    
    training_accuracy = metrics.r2_score(y_train,training_predictions) 
#    test_accuracy_model = metrics.r2_score(y_test,test_prediction_model)
    test_accuracy = metrics.r2_score(y_test,testing_predictions)
    
#    print"Cross-val predicted accuracy:", training_accuracy
    print"Test-predictions accuracy:",test_accuracy

    plot_model(target,y_train,y_test,training_predictions,testing_predictions)
    return model_rdf
开发者ID:SOLIMAN68,项目名称:Data-driven_Building_simulation_Polimi_EETBS,代码行数:25,代码来源:master_1_4_eachBuilding_allModels.py

示例2: svm_regressor

def svm_regressor(features,target,test_size_percent=0.2,cv_split=5):
    
    scale=preprocessing.MinMaxScaler()
    X_array = scale.fit_transform(features)
    y_array = scale.fit_transform(target)  
    X_train, X_test, y_train, y_test = train_test_split(X_array, y_array.T.squeeze(), test_size=test_size_percent, random_state=4)
    svr = SVR(kernel='rbf',C=10,gamma=1)
    svr.fit(X_train,y_train.ravel())
    test_prediction = svr.predict(X_test)
    tscv = TimeSeriesSplit(cv_split)
    
    training_score = cross_val_score(svr,X_train,y_train,cv=tscv.n_splits) 
    testing_score = cross_val_score(svr,X_test,y_test,cv=tscv.n_splits)
    print"Cross-val Training score:", training_score.mean()
#    print"Cross-val Testing score:", testing_score.mean()
    training_predictions = cross_val_predict(svr,X_train,y_train,cv=tscv.n_splits)
    testing_predictions = cross_val_predict(svr,X_test,y_test,cv=tscv.n_splits)
    
    training_accuracy = metrics.r2_score(y_train,training_predictions) 
#    test_accuracy_model = metrics.r2_score(y_test,test_prediction_model)
    test_accuracy = metrics.r2_score(y_test,testing_predictions)
    
#    print"Cross-val predicted accuracy:", training_accuracy
    print"Test-predictions accuracy:",test_accuracy
    return svr
开发者ID:SOLIMAN68,项目名称:Data-driven_Building_simulation_Polimi_EETBS,代码行数:25,代码来源:master_1_4_eachBuilding_allModels.py

示例3: test_cross_val_predict_with_method

def test_cross_val_predict_with_method():
    iris = load_iris()
    X, y = iris.data, iris.target
    X, y = shuffle(X, y, random_state=0)
    classes = len(set(y))

    kfold = KFold(len(iris.target))

    methods = ['decision_function', 'predict_proba', 'predict_log_proba']
    for method in methods:
        est = LogisticRegression()

        predictions = cross_val_predict(est, X, y, method=method)
        assert_equal(len(predictions), len(y))

        expected_predictions = np.zeros([len(y), classes])
        func = getattr(est, method)

        # Naive loop (should be same as cross_val_predict):
        for train, test in kfold.split(X, y):
            est.fit(X[train], y[train])
            expected_predictions[test] = func(X[test])

        predictions = cross_val_predict(est, X, y, method=method,
                                        cv=kfold)
        assert_array_almost_equal(expected_predictions, predictions)
开发者ID:447327642,项目名称:scikit-learn,代码行数:26,代码来源:test_validation.py

示例4: linear_regression

def linear_regression(features,target,test_size_percent=0.2,cv_split=5):
    ''' Features -> Pandas Dataframe with attributes as columns
        target -> Pandas Dataframe with target column for prediction
        Test_size_percent -> Percentage of data point to be used for testing'''
    X_array = features.as_matrix()
    y_array = target.as_matrix()    
    ols = linear_model.LinearRegression()
    X_train, X_test, y_train, y_test = train_test_split(X_array, y_array.T.squeeze(), test_size=test_size_percent, random_state=4)
#    model = ols.fit(X_train, y_train)
    ols.fit(X_train, y_train)
#    test_prediction_model = ols.predict(X_test)
    tscv = TimeSeriesSplit(cv_split)
    
    training_score = cross_val_score(ols,X_train,y_train,cv=tscv.n_splits) 
    testing_score = cross_val_score(ols,X_test,y_test,cv=tscv.n_splits)
    print"Cross-val Training score:", training_score.mean()
#    print"Cross-val Testing score:", testing_score.mean()
    training_predictions = cross_val_predict(ols,X_train,y_train,cv=tscv.n_splits)
    testing_predictions = cross_val_predict(ols,X_test,y_test,cv=tscv.n_splits)
    
    training_accuracy = metrics.r2_score(y_train,training_predictions) 
#    test_accuracy_model = metrics.r2_score(y_test,test_prediction_model)
    test_accuracy = metrics.r2_score(y_test,testing_predictions)
    
#    print"Cross-val predicted accuracy:", training_accuracy
    print"Test-predictions accuracy:",test_accuracy

    plot_model(target,y_train,y_test,training_predictions,testing_predictions)
    return ols
开发者ID:SOLIMAN68,项目名称:Data-driven_Building_simulation_Polimi_EETBS,代码行数:29,代码来源:master_1_4_eachBuilding_allModels.py

示例5: neural_net

def neural_net(features,target,test_size_percent=0.2,cv_split=3,n_iter=100,learning_rate=0.01):
    '''Features -> Pandas Dataframe with attributes as columns
        target -> Pandas Dataframe with target column for prediction
        Test_size_percent -> Percentage of data point to be used for testing'''
    scale=preprocessing.MinMaxScaler()
    X_array = scale.fit_transform(features)
    y_array = scale.fit_transform(target)
    mlp = Regressor(layers=[Layer("Rectifier",units=5), # Hidden Layer1
                            Layer("Rectifier",units=3)  # Hidden Layer2
                            ,Layer("Linear")],     # Output Layer
                        n_iter = n_iter, learning_rate=0.01)
    X_train, X_test, y_train, y_test = train_test_split(X_array, y_array.T.squeeze(), test_size=test_size_percent, random_state=4)
    mlp.fit(X_train,y_train)
    test_prediction = mlp.predict(X_test)
    tscv = TimeSeriesSplit(cv_split)
    
    training_score = cross_val_score(mlp,X_train,y_train,cv=tscv.n_splits) 
    testing_score = cross_val_score(mlp,X_test,y_test,cv=tscv.n_splits)
    print"Cross-val Training score:", training_score.mean()
#    print"Cross-val Testing score:", testing_score.mean()
    training_predictions = cross_val_predict(mlp,X_train,y_train,cv=tscv.n_splits)
    testing_predictions = cross_val_predict(mlp,X_test,y_test,cv=tscv.n_splits)
    
    training_accuracy = metrics.r2_score(y_train,training_predictions) 
#    test_accuracy_model = metrics.r2_score(y_test,test_prediction_model)
    test_accuracy = metrics.r2_score(y_test,testing_predictions)
    
#    print"Cross-val predicted accuracy:", training_accuracy
    print"Test-predictions accuracy:",test_accuracy

    plot_model(target,y_train,y_test,training_predictions,testing_predictions)
    return mlp
开发者ID:SOLIMAN68,项目名称:Data-driven_Building_simulation_Polimi_EETBS,代码行数:32,代码来源:master_1_4_eachBuilding_allModels.py

示例6: scan2D

def scan2D(X, y, window=(10, 10), estimator_params=dict(n_jobs=-1), cv=3):
    "2D scanning"
    inputs, labels, instances = [], [], []
    instance_count = 0
    for sample, label in zip(X, y):
        sample_shape = sample.shape
        for s1 in range(sample.shape[0]-window[0]):
            for s2 in range(sample.shape[1]-window[1]):
                part = sample[s1:s1+window[0], s2:s2+window[1]]
                inputs.append(part.flatten())
                labels.append(label)
                instances.append(instance_count)
        instance_count += 1
    rf = RandomForestClassifier(**estimator_params)
    estimator_params.update({'max_features': 1})
    cf = RandomForestClassifier(**estimator_params)
    probas1 = cross_val_predict(rf, inputs, labels, cv=cv, method='predict_proba')
    probas2 = cross_val_predict(cf, inputs, labels, cv=cv, method='predict_proba')
    probas = []
    for instance in set(instances):
        mask = [i == instance for i in instances]
        p1 = probas1[mask]
        p2 = probas2[mask]
        p = np.concatenate([p1.flatten(), p2.flatten()], axis=0)
        probas.append(p)
    return probas
开发者ID:sig-ml,项目名称:bleedml,代码行数:26,代码来源:utils.py

示例7: fit

    def fit(self, X, y):
        # Check data
        X, y = np.array(X), np.array(y)
        X, y = check_X_y(X, y)
        # Split to grow cascade and validate
        mask = np.random.random(y.shape[0]) < self.validation_fraction
        X_tr, X_vl = X[mask], X[~mask]
        y_tr, y_vl = y[mask], y[~mask]

        self.classes_ = unique_labels(y)
        self.layers_, inp_tr, inp_vl = [], X_tr, X_vl
        self.scores_ = []

        # First layer
        forests = [RandomForestClassifier(max_features=1, n_estimators=self.n_estimators, min_samples_split=10, criterion='gini', n_jobs=-1),  # Complete random
                    RandomForestClassifier(max_features=1, n_estimators=self.n_estimators, min_samples_split=10, criterion='gini', n_jobs=-1),  # Complete random
                    RandomForestClassifier(n_estimators=self.n_estimators, n_jobs=-1),
                    RandomForestClassifier(n_estimators=self.n_estimators, n_jobs=-1)]
        _ = [f.fit(inp_tr, y_tr) for f in forests]
        p_vl = [f.predict_proba(inp_vl) for f in forests]
        labels = [self.classes_[i] for i in np.argmax(np.array(p_vl).mean(axis=0), axis=1)]
        score = self.scoring(y_vl, labels)
        self.layers_.append(forests)
        self.scores_.append(score)
        p_tr = [cross_val_predict(f, inp_tr, y_tr, cv=self.cv, method='predict_proba') for f in forests]

        # Fit other layers
        last_score = score
        inp_tr, inp_vl = np.concatenate([X_tr]+p_tr, axis=1), np.concatenate([X_vl]+p_vl, axis=1)
        while True:  # Grow cascade
            forests = [RandomForestClassifier(max_features=1, n_estimators=self.n_estimators, min_samples_split=10, criterion='gini', n_jobs=-1),  # Complete random
                    RandomForestClassifier(max_features=1, n_estimators=self.n_estimators, min_samples_split=10, criterion='gini', n_jobs=-1),  # Complete random
                    RandomForestClassifier(n_estimators=self.n_estimators, n_jobs=-1),
                    RandomForestClassifier(n_estimators=self.n_estimators, n_jobs=-1)]
            _ = [forest.fit(inp_tr, y_tr) for forest in forests] # Fit the forest
            p_vl = [forest.predict_proba(inp_vl) for forest in forests]
            labels = [self.classes_[i] for i in np.argmax(np.array(p_vl).mean(axis=0), axis=1)]
            score = self.scoring(y_vl, labels)

            if score - last_score > self.tolerance:
                self.layers_.append(forests)
                p_tr = [cross_val_predict(f, inp_tr, y_tr, cv=self.cv, method='predict_proba') for f in forests]
                inp_tr, inp_vl = np.concatenate([X_tr]+p_tr, axis=1), np.concatenate([X_vl]+p_vl, axis=1)
                self.scores_.append(score)
                last_score = score
                print(self.scores_)
            else:
                break
        # Retrain on entire dataset
        inp_ = X
        for forests in self.layers_:
            _ = [f.fit(inp_, y) for f in forests]
            p = [cross_val_predict(f, inp_, y, cv=self.cv, method='predict_proba') for f in forests]
            inp_ = np.concatenate([X]+p, axis=1)
        return self
开发者ID:sig-ml,项目名称:bleedml,代码行数:55,代码来源:classifiers.py

示例8: test_cross_val_predict_sparse_prediction

def test_cross_val_predict_sparse_prediction():
    # check that cross_val_predict gives same result for sparse and dense input
    X, y = make_multilabel_classification(n_classes=2, n_labels=1,
                                          allow_unlabeled=False,
                                          return_indicator=True,
                                          random_state=1)
    X_sparse = csr_matrix(X)
    y_sparse = csr_matrix(y)
    classif = OneVsRestClassifier(SVC(kernel='linear'))
    preds = cross_val_predict(classif, X, y, cv=10)
    preds_sparse = cross_val_predict(classif, X_sparse, y_sparse, cv=10)
    preds_sparse = preds_sparse.toarray()
    assert_array_almost_equal(preds_sparse, preds)
开发者ID:447327642,项目名称:scikit-learn,代码行数:13,代码来源:test_validation.py

示例9: test_cross_val_predict_pandas

def test_cross_val_predict_pandas():
    # check cross_val_score doesn't destroy pandas dataframe
    types = [(MockDataFrame, MockDataFrame)]
    try:
        from pandas import Series, DataFrame
        types.append((Series, DataFrame))
    except ImportError:
        pass
    for TargetType, InputFeatureType in types:
        # X dataframe, y series
        X_df, y_ser = InputFeatureType(X), TargetType(y2)
        check_df = lambda x: isinstance(x, InputFeatureType)
        check_series = lambda x: isinstance(x, TargetType)
        clf = CheckingClassifier(check_X=check_df, check_y=check_series)
        cross_val_predict(clf, X_df, y_ser)
开发者ID:447327642,项目名称:scikit-learn,代码行数:15,代码来源:test_validation.py

示例10: fit

 def fit(self, x, y, **params):
     """ fit training data """
     preds = []
     for i, clf in enumerate(self.clfs):
         log.info("fit %s"%i)
         if "Keras" in str(clf) and "verbose" in params:
             params["fit_params"] = dict(verbose=params["verbose"])
             
         # save out-of-fold predictions to fit metaclf
         if clf.hasattr("predict_proba"):
             method = "predict_proba"
         else:
             method = "predict"
         pred = cross_val_predict(clf, x, y, 
                                  cv=self.cv, verbose=0,
                                  method=method,
                                  **params)        
         preds.append(pred)
         
         # fully fitted to predict test data
         clf.fit(x, y, verbose=0)
     
     # fit metaclf on out-of-fold predictions
     log.info("fit metaclf")
     self.metaclf.fit(np.hstack(preds), y)
     return self
开发者ID:simonm3,项目名称:analysis,代码行数:26,代码来源:classifiers.py

示例11: crossval

 def crossval(self, verbose=0, seed=0, method="predict", **params):
     """ returns crossval score
         sets self.preds
     """
     # track time spent per run
     starttime = time()
     
     np.random.seed(seed)         
 
     # useful for keras but throws exception for others
     if "Keras" in get_clfname(self.clf):
         self.clf.set_params(verbose=verbose)
         
     self.clf.set_params(**params)
     
     self.preds = cross_val_predict(self.clf, self.xtrain, self.ytrain,
                                    method=method)
     score = self.scorer._score_func(self.ytrain, self.preds) \
                     * self.scorer._sign
     
     # log results
     params.update(clf=get_clfname(self.clf),
                   name=self.name,
                   score=score, 
                   elapsed=time()-starttime)
     if self.runs:
         self.runs.append(params, self.preds)
         
     return score
开发者ID:simonm3,项目名称:analysis,代码行数:29,代码来源:model.py

示例12: test_cross_val_predict_input_types

def test_cross_val_predict_input_types():
    clf = Ridge()
    # Smoke test
    predictions = cross_val_predict(clf, X, y)
    assert_equal(predictions.shape, (10,))

    # test with multioutput y
    predictions = cross_val_predict(clf, X_sparse, X)
    assert_equal(predictions.shape, (10, 2))

    predictions = cross_val_predict(clf, X_sparse, y)
    assert_array_equal(predictions.shape, (10,))

    # test with multioutput y
    predictions = cross_val_predict(clf, X_sparse, X)
    assert_array_equal(predictions.shape, (10, 2))

    # test with X and y as list
    list_check = lambda x: isinstance(x, list)
    clf = CheckingClassifier(check_X=list_check)
    predictions = cross_val_predict(clf, X.tolist(), y.tolist())

    clf = CheckingClassifier(check_y=list_check)
    predictions = cross_val_predict(clf, X, y.tolist())

    # test with 3d X and
    X_3d = X[:, :, np.newaxis]
    check_3d = lambda x: x.ndim == 3
    clf = CheckingClassifier(check_X=check_3d)
    predictions = cross_val_predict(clf, X_3d, y)
    assert_array_equal(predictions.shape, (10,))
开发者ID:AlexanderFabisch,项目名称:scikit-learn,代码行数:31,代码来源:test_validation.py

示例13: crossVertifyTestData

 def crossVertifyTestData(self):
     """
     交叉验证Test数据并返回结果
         :param self: 类变量本身
         :returns: 返回真正的y和预测的y,真正的y在前面
     """   
     # 进行交叉验证
     predict_y = cross_val_predict(self.model, self.test_X, cv=10)
     return self.test_y, predict_y
开发者ID:WQ-huziang,项目名称:WQ-Testcode,代码行数:9,代码来源:modelEngineer.py

示例14: _get_estimator_mse

    def _get_estimator_mse(self, x, y, estimator):
        """Return the RMSE for *estimator*.

        Use GroupKFold where a group is a combination of input size and number
        of workers. The prediction of a group is done when it is out of the
        training set.
        """
        groups = self._groups.loc[x.index]
        cv = GroupKFold(n_splits=3)
        prediction = cross_val_predict(estimator, x, y, groups, cv)
        return metrics.mean_squared_error(y, prediction)
开发者ID:cemsbr,项目名称:phd_notebook,代码行数:11,代码来源:notebook005.py

示例15: save_fit_plot

def save_fit_plot(x, y, fit, name, folder):
    predicted = cross_val_predict(fit, x, y, cv=10)
    linfit = np.polyfit(y, predicted, 1)

    fig, ax = plt.subplots()
    ax.scatter(y, predicted, s=1, alpha=0.1)
    ax.plot([y.min(), y.max()], [y.min(), y.max()], "k--", lw=2)
    ax.plot(y, np.poly1d(linfit)(y), "g--", lw=2)
    ax.set_xlabel("Measured")
    ax.set_ylabel("Predicted")
    f_name = timed_filename(name, "pdf")
    plt.savefig(os.path.join(folder, f_name))
开发者ID:Geonovum,项目名称:smartemission,代码行数:12,代码来源:data.py


注:本文中的sklearn.model_selection.cross_val_predict函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。