当前位置: 首页>>代码示例>>Python>>正文


Python GaussianMixture.predict_proba方法代码示例

本文整理汇总了Python中sklearn.mixture.gaussian_mixture.GaussianMixture.predict_proba方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianMixture.predict_proba方法的具体用法?Python GaussianMixture.predict_proba怎么用?Python GaussianMixture.predict_proba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.mixture.gaussian_mixture.GaussianMixture的用法示例。


在下文中一共展示了GaussianMixture.predict_proba方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_gaussian_mixture_predict_predict_proba

# 需要导入模块: from sklearn.mixture.gaussian_mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.gaussian_mixture.GaussianMixture import predict_proba [as 别名]
def test_gaussian_mixture_predict_predict_proba():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng)
    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]
        Y = rand_data.Y
        g = GaussianMixture(n_components=rand_data.n_components,
                            random_state=rng, weights_init=rand_data.weights,
                            means_init=rand_data.means,
                            precisions_init=rand_data.precisions[covar_type],
                            covariance_type=covar_type)

        # Check a warning message arrive if we don't do fit
        assert_raise_message(NotFittedError,
                             "This GaussianMixture instance is not fitted "
                             "yet. Call 'fit' with appropriate arguments "
                             "before using this method.", g.predict, X)

        g.fit(X)
        Y_pred = g.predict(X)
        Y_pred_proba = g.predict_proba(X).argmax(axis=1)
        assert_array_equal(Y_pred, Y_pred_proba)
        assert_greater(adjusted_rand_score(Y, Y_pred), .95)
开发者ID:jerry-dumblauskas,项目名称:scikit-learn,代码行数:25,代码来源:test_gaussian_mixture.py

示例2: test_gaussian_mixture_estimate_log_prob_resp

# 需要导入模块: from sklearn.mixture.gaussian_mixture import GaussianMixture [as 别名]
# 或者: from sklearn.mixture.gaussian_mixture.GaussianMixture import predict_proba [as 别名]
def test_gaussian_mixture_estimate_log_prob_resp():
    # test whether responsibilities are normalized
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=5)
    n_samples = rand_data.n_samples
    n_features = rand_data.n_features
    n_components = rand_data.n_components

    X = rng.rand(n_samples, n_features)
    for covar_type in COVARIANCE_TYPE:
        weights = rand_data.weights
        means = rand_data.means
        precisions = rand_data.precisions[covar_type]
        g = GaussianMixture(n_components=n_components, random_state=rng,
                            weights_init=weights, means_init=means,
                            precisions_init=precisions,
                            covariance_type=covar_type)
        g.fit(X)
        resp = g.predict_proba(X)
        assert_array_almost_equal(resp.sum(axis=1), np.ones(n_samples))
        assert_array_equal(g.weights_init, weights)
        assert_array_equal(g.means_init, means)
        assert_array_equal(g.precisions_init, precisions)
开发者ID:jerry-dumblauskas,项目名称:scikit-learn,代码行数:25,代码来源:test_gaussian_mixture.py


注:本文中的sklearn.mixture.gaussian_mixture.GaussianMixture.predict_proba方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。