本文整理汇总了Python中sklearn.manifold.t_sne.trustworthiness函数的典型用法代码示例。如果您正苦于以下问题:Python trustworthiness函数的具体用法?Python trustworthiness怎么用?Python trustworthiness使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了trustworthiness函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_trustworthiness_not_euclidean_metric
def test_trustworthiness_not_euclidean_metric():
# Test trustworthiness with a metric different from 'euclidean' and
# 'precomputed'
random_state = check_random_state(0)
X = random_state.randn(100, 2)
assert_equal(trustworthiness(X, X, metric='cosine'),
trustworthiness(pairwise_distances(X, metric='cosine'), X,
metric='precomputed'))
示例2: test_preserve_trustworthiness_approximately_with_precomputed_distances
def test_preserve_trustworthiness_approximately_with_precomputed_distances():
# Nearest neighbors should be preserved approximately.
random_state = check_random_state(0)
X = random_state.randn(100, 2)
D = squareform(pdist(X), "sqeuclidean")
tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0, metric="precomputed", random_state=0, verbose=0)
X_embedded = tsne.fit_transform(D)
assert_almost_equal(trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True), 1.0, decimal=1)
示例3: test_trustworthiness
def test_trustworthiness():
# Test trustworthiness score.
random_state = check_random_state(0)
# Affine transformation
X = random_state.randn(100, 2)
assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0)
# Randomly shuffled
X = np.arange(100).reshape(-1, 1)
X_embedded = X.copy()
random_state.shuffle(X_embedded)
assert_less(trustworthiness(X, X_embedded), 0.6)
# Completely different
X = np.arange(5).reshape(-1, 1)
X_embedded = np.array([[0], [2], [4], [1], [3]])
assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2)
示例4: test_fit_csr_matrix
def test_fit_csr_matrix():
# X can be a sparse matrix.
random_state = check_random_state(0)
X = random_state.randn(100, 2)
X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0
X_csr = sp.csr_matrix(X)
tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0, method="exact")
X_embedded = tsne.fit_transform(X_csr)
assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1)
示例5: test_preserve_trustworthiness_approximately
def test_preserve_trustworthiness_approximately():
"""Nearest neighbors should be preserved approximately."""
random_state = check_random_state(0)
X = random_state.randn(100, 2)
for init in ('random', 'pca'):
tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0,
init=init, random_state=0)
X_embedded = tsne.fit_transform(X)
assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 1.0,
decimal=1)
示例6: test_preserve_trustworthiness_approximately_with_precomputed_distances
def test_preserve_trustworthiness_approximately_with_precomputed_distances():
# Nearest neighbors should be preserved approximately.
random_state = check_random_state(0)
for i in range(3):
X = random_state.randn(100, 2)
D = squareform(pdist(X), "sqeuclidean")
tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0,
early_exaggeration=2.0, metric="precomputed",
random_state=i, verbose=0)
X_embedded = tsne.fit_transform(D)
t = trustworthiness(D, X_embedded, n_neighbors=1, metric="precomputed")
assert t > .95
示例7: test_preserve_trustworthiness_approximately
def test_preserve_trustworthiness_approximately():
# Nearest neighbors should be preserved approximately.
random_state = check_random_state(0)
n_components = 2
methods = ['exact', 'barnes_hut']
X = random_state.randn(50, n_components).astype(np.float32)
for init in ('random', 'pca'):
for method in methods:
tsne = TSNE(n_components=n_components, init=init, random_state=0,
method=method)
X_embedded = tsne.fit_transform(X)
t = trustworthiness(X, X_embedded, n_neighbors=1)
assert_greater(t, 0.9)
示例8: tsne
def tsne(D, medoids_df, dest_dir, fn):
# Reproducing braincode/calculate_cluster_medoids_tSNE
print('2D TSNE embedding plotting')
tSNE = TSNE(n_components=2, perplexity=5,
early_exaggeration=1.0, learning_rate=10.0,
metric='precomputed', verbose=True, random_state=0)
medoids2D = pd.DataFrame(tSNE.fit_transform(D), index=medoids_df.index)
print('Trusty TSNE: %.2f' % trustworthiness(D.values,
medoids2D.values,
n_neighbors=5,
precomputed=True))
fig, ax = plt.subplots(nrows=1, ncols=1)
cluster_scatter_plot(medoids2D[0], medoids2D[1],
labels=map(str, medoids2D.index),
ax=ax)
plt.savefig(op.join(dest_dir, fn + '.singletons.tsne.png'))
示例9: test_preserve_trustworthiness_approximately
def test_preserve_trustworthiness_approximately():
# Nearest neighbors should be preserved approximately.
random_state = check_random_state(0)
# The Barnes-Hut approximation uses a different method to estimate
# P_ij using only a number of nearest neighbors instead of all
# points (so that k = 3 * perplexity). As a result we set the
# perplexity=5, so that the number of neighbors is 5%.
n_components = 2
methods = ['exact', 'barnes_hut']
X = random_state.randn(100, n_components).astype(np.float32)
for init in ('random', 'pca'):
for method in methods:
tsne = TSNE(n_components=n_components, perplexity=50,
learning_rate=100.0, init=init, random_state=0,
method=method)
X_embedded = tsne.fit_transform(X)
T = trustworthiness(X, X_embedded, n_neighbors=1)
assert_almost_equal(T, 1.0, decimal=1)