本文整理汇总了Python中sklearn.manifold.spectral_embedding_.SpectralEmbedding.fit_transform方法的典型用法代码示例。如果您正苦于以下问题:Python SpectralEmbedding.fit_transform方法的具体用法?Python SpectralEmbedding.fit_transform怎么用?Python SpectralEmbedding.fit_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.manifold.spectral_embedding_.SpectralEmbedding
的用法示例。
在下文中一共展示了SpectralEmbedding.fit_transform方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_spectral_embedding_two_components
# 需要导入模块: from sklearn.manifold.spectral_embedding_ import SpectralEmbedding [as 别名]
# 或者: from sklearn.manifold.spectral_embedding_.SpectralEmbedding import fit_transform [as 别名]
def test_spectral_embedding_two_components(seed=36):
"""Test spectral embedding with two components"""
random_state = np.random.RandomState(seed)
n_sample = 100
affinity = np.zeros(shape=[n_sample * 2,
n_sample * 2])
# first component
affinity[0:n_sample,
0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2
# second component
affinity[n_sample::,
n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2
# connection
affinity[0, n_sample + 1] = 1
affinity[n_sample + 1, 0] = 1
affinity.flat[::2 * n_sample + 1] = 0
affinity = 0.5 * (affinity + affinity.T)
true_label = np.zeros(shape=2 * n_sample)
true_label[0:n_sample] = 1
se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed",
random_state=np.random.RandomState(seed))
embedded_coordinate = se_precomp.fit_transform(affinity)
# Some numpy versions are touchy with types
embedded_coordinate = \
se_precomp.fit_transform(affinity.astype(np.float32))
# thresholding on the first components using 0.
label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float")
assert_equal(normalized_mutual_info_score(true_label, label_), 1.0)
示例2: test_spectral_embedding_precomputed_affinity
# 需要导入模块: from sklearn.manifold.spectral_embedding_ import SpectralEmbedding [as 别名]
# 或者: from sklearn.manifold.spectral_embedding_.SpectralEmbedding import fit_transform [as 别名]
def test_spectral_embedding_precomputed_affinity(seed=36):
# Test spectral embedding with precomputed kernel
gamma = 1.0
se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed))
se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed))
embed_precomp = se_precomp.fit_transform(rbf_kernel(S, gamma=gamma))
embed_rbf = se_rbf.fit_transform(S)
assert_array_almost_equal(se_precomp.affinity_matrix_, se_rbf.affinity_matrix_)
assert_true(_check_with_col_sign_flipping(embed_precomp, embed_rbf, 0.05))
示例3: test_spectral_embedding_amg_solver
# 需要导入模块: from sklearn.manifold.spectral_embedding_ import SpectralEmbedding [as 别名]
# 或者: from sklearn.manifold.spectral_embedding_.SpectralEmbedding import fit_transform [as 别名]
def test_spectral_embedding_amg_solver(seed=36):
"""Test spectral embedding with amg solver"""
try:
from pyamg import smoothed_aggregation_solver
except ImportError:
raise SkipTest("pyamg not available.")
se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors",
eigen_solver="amg", n_neighbors=5,
random_state=np.random.RandomState(seed))
se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors",
eigen_solver="arpack", n_neighbors=5,
random_state=np.random.RandomState(seed))
embed_amg = se_amg.fit_transform(S)
embed_arpack = se_arpack.fit_transform(S)
assert_true(_check_with_col_sign_flipping(embed_amg, embed_arpack, 0.05))
示例4: test_spectral_embedding_callable_affinity
# 需要导入模块: from sklearn.manifold.spectral_embedding_ import SpectralEmbedding [as 别名]
# 或者: from sklearn.manifold.spectral_embedding_.SpectralEmbedding import fit_transform [as 别名]
def test_spectral_embedding_callable_affinity(seed=36):
# Test spectral embedding with callable affinity
gamma = 0.9
kern = rbf_kernel(S, gamma=gamma)
se_callable = SpectralEmbedding(
n_components=2,
affinity=(lambda x: rbf_kernel(x, gamma=gamma)),
gamma=gamma,
random_state=np.random.RandomState(seed),
)
se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed))
embed_rbf = se_rbf.fit_transform(S)
embed_callable = se_callable.fit_transform(S)
assert_array_almost_equal(se_callable.affinity_matrix_, se_rbf.affinity_matrix_)
assert_array_almost_equal(kern, se_rbf.affinity_matrix_)
assert_true(_check_with_col_sign_flipping(embed_rbf, embed_callable, 0.05))
示例5: test_spectral_embedding_two_components
# 需要导入模块: from sklearn.manifold.spectral_embedding_ import SpectralEmbedding [as 别名]
# 或者: from sklearn.manifold.spectral_embedding_.SpectralEmbedding import fit_transform [as 别名]
def test_spectral_embedding_two_components(seed=36):
"""Test spectral embedding with two components"""
random_state = np.random.RandomState(seed)
n_sample = 100
affinity = np.zeros(shape=[n_sample * 2,
n_sample * 2])
# first component
affinity[0:n_sample,
0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2
# second component
affinity[n_sample::,
n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2
# connection
affinity[0, n_sample + 1] = 1
affinity[n_sample + 1, 0] = 1
affinity.flat[::2 * n_sample + 1] = 0
affinity = 0.5 * (affinity + affinity.T)
true_label = np.zeros(shape=2 * n_sample)
true_label[0:n_sample] = 1
se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed",
random_state=np.random.RandomState(seed))
embedded_coordinate = se_precomp.fit_transform(affinity)
# Some numpy versions are touchy with types
embedded_coordinate = \
se_precomp.fit_transform(affinity.astype(np.float32))
# thresholding on the first components using 0.
label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float")
assert_equal(normalized_mutual_info_score(true_label, label_), 1.0)
# test that we can still import spectral embedding
from sklearn.cluster import spectral_embedding as se_deprecated
warnings.simplefilter("always", DeprecationWarning)
with warnings.catch_warnings(record=True) as warning_list:
embedded_depr = se_deprecated(affinity, n_components=1,
random_state=np.random.RandomState(seed))
assert_equal(len(warning_list), 1)
warnings.filters.pop(0)
assert_true(_check_with_col_sign_flipping(embedded_coordinate,
embedded_depr, 0.05))