当前位置: 首页>>代码示例>>Python>>正文


Python MultiTaskElasticNetCV.fit方法代码示例

本文整理汇总了Python中sklearn.linear_model.coordinate_descent.MultiTaskElasticNetCV.fit方法的典型用法代码示例。如果您正苦于以下问题:Python MultiTaskElasticNetCV.fit方法的具体用法?Python MultiTaskElasticNetCV.fit怎么用?Python MultiTaskElasticNetCV.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model.coordinate_descent.MultiTaskElasticNetCV的用法示例。


在下文中一共展示了MultiTaskElasticNetCV.fit方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_enet_path

# 需要导入模块: from sklearn.linear_model.coordinate_descent import MultiTaskElasticNetCV [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.MultiTaskElasticNetCV import fit [as 别名]
def test_enet_path():
    # We use a large number of samples and of informative features so that
    # the l1_ratio selected is more toward ridge than lasso
    X, y, X_test, y_test = build_dataset(n_samples=200, n_features=100,
                                         n_informative_features=100)
    max_iter = 150

    # Here we have a small number of iterations, and thus the
    # ElasticNet might not converge. This is to speed up tests
    clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3,
                       l1_ratio=[0.5, 0.7], cv=3,
                       max_iter=max_iter)
    ignore_warnings(clf.fit)(X, y)
    # Well-conditioned settings, we should have selected our
    # smallest penalty
    assert_almost_equal(clf.alpha_, min(clf.alphas_))
    # Non-sparse ground truth: we should have selected an elastic-net
    # that is closer to ridge than to lasso
    assert_equal(clf.l1_ratio_, min(clf.l1_ratio))

    clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3,
                       l1_ratio=[0.5, 0.7], cv=3,
                       max_iter=max_iter, precompute=True)
    ignore_warnings(clf.fit)(X, y)

    # Well-conditioned settings, we should have selected our
    # smallest penalty
    assert_almost_equal(clf.alpha_, min(clf.alphas_))
    # Non-sparse ground truth: we should have selected an elastic-net
    # that is closer to ridge than to lasso
    assert_equal(clf.l1_ratio_, min(clf.l1_ratio))

    # We are in well-conditioned settings with low noise: we should
    # have a good test-set performance
    assert_greater(clf.score(X_test, y_test), 0.99)

    # Multi-output/target case
    X, y, X_test, y_test = build_dataset(n_features=10, n_targets=3)
    clf = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7],
                                cv=3, max_iter=max_iter)
    ignore_warnings(clf.fit)(X, y)
    # We are in well-conditioned settings with low noise: we should
    # have a good test-set performance
    assert_greater(clf.score(X_test, y_test), 0.99)
    assert_equal(clf.coef_.shape, (3, 10))

    # Mono-output should have same cross-validated alpha_ and l1_ratio_
    # in both cases.
    X, y, _, _ = build_dataset(n_features=10)
    clf1 = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7])
    clf1.fit(X, y)
    clf2 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7])
    clf2.fit(X, y[:, np.newaxis])
    assert_almost_equal(clf1.l1_ratio_, clf2.l1_ratio_)
    assert_almost_equal(clf1.alpha_, clf2.alpha_)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:57,代码来源:test_coordinate_descent.py

示例2: test_1d_multioutput_enet_and_multitask_enet_cv

# 需要导入模块: from sklearn.linear_model.coordinate_descent import MultiTaskElasticNetCV [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.MultiTaskElasticNetCV import fit [as 别名]
def test_1d_multioutput_enet_and_multitask_enet_cv():
    X, y, _, _ = build_dataset(n_features=10)
    y = y[:, np.newaxis]
    clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7])
    clf.fit(X, y[:, 0])
    clf1 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7])
    clf1.fit(X, y)
    assert_almost_equal(clf.l1_ratio_, clf1.l1_ratio_)
    assert_almost_equal(clf.alpha_, clf1.alpha_)
    assert_almost_equal(clf.coef_, clf1.coef_[0])
    assert_almost_equal(clf.intercept_, clf1.intercept_[0])
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:13,代码来源:test_coordinate_descent.py

示例3: test_multitask_enet_and_lasso_cv

# 需要导入模块: from sklearn.linear_model.coordinate_descent import MultiTaskElasticNetCV [as 别名]
# 或者: from sklearn.linear_model.coordinate_descent.MultiTaskElasticNetCV import fit [as 别名]
def test_multitask_enet_and_lasso_cv():
    X, y, _, _ = build_dataset(n_features=50, n_targets=3)
    clf = MultiTaskElasticNetCV().fit(X, y)
    assert_almost_equal(clf.alpha_, 0.00556, 3)
    clf = MultiTaskLassoCV().fit(X, y)
    assert_almost_equal(clf.alpha_, 0.00278, 3)

    X, y, _, _ = build_dataset(n_targets=3)
    clf = MultiTaskElasticNetCV(n_alphas=10, eps=1e-3, max_iter=100, l1_ratio=[0.3, 0.5], tol=1e-3)
    clf.fit(X, y)
    assert_equal(0.5, clf.l1_ratio_)
    assert_equal((3, X.shape[1]), clf.coef_.shape)
    assert_equal((3,), clf.intercept_.shape)
    assert_equal((2, 10, 3), clf.mse_path_.shape)
    assert_equal((2, 10), clf.alphas_.shape)

    X, y, _, _ = build_dataset(n_targets=3)
    clf = MultiTaskLassoCV(n_alphas=10, eps=1e-3, max_iter=100, tol=1e-3)
    clf.fit(X, y)
    assert_equal((3, X.shape[1]), clf.coef_.shape)
    assert_equal((3,), clf.intercept_.shape)
    assert_equal((10, 3), clf.mse_path_.shape)
    assert_equal(10, len(clf.alphas_))
开发者ID:nelson-liu,项目名称:scikit-learn,代码行数:25,代码来源:test_coordinate_descent.py


注:本文中的sklearn.linear_model.coordinate_descent.MultiTaskElasticNetCV.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。