当前位置: 首页>>代码示例>>Python>>正文


Python linear_model.PassiveAggressiveClassifier类代码示例

本文整理汇总了Python中sklearn.linear_model.PassiveAggressiveClassifier的典型用法代码示例。如果您正苦于以下问题:Python PassiveAggressiveClassifier类的具体用法?Python PassiveAggressiveClassifier怎么用?Python PassiveAggressiveClassifier使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了PassiveAggressiveClassifier类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train_and_predict_m7

def train_and_predict_m7 (train, test, labels) :
    ## Apply basic concatenation + stemming
    trainData, testData = stemmer_clean (train, test, stemmerEnableM7, stemmer_type = 'snowball')

    ## TF-IDF transform with sub-linear TF and stop-word removal
    tfv = TfidfVectorizer(min_df = 5, max_features = None, strip_accents = 'unicode', analyzer = 'word', token_pattern = r'\w{1,}', ngram_range = (1, 5), smooth_idf = 1, sublinear_tf = 1, stop_words = ML_STOP_WORDS)
    tfv.fit(trainData)
    X =  tfv.transform(trainData) 
    X_test = tfv.transform(testData)
    
    ## Create the classifier
    print ("Fitting Passive-Aggressive Classifer...")
    clf = PassiveAggressiveClassifier(random_state = randomState, loss = 'squared_hinge', n_iter = 100, C = 0.01)
    
    ## Create a parameter grid to search for best parameters for everything in the pipeline
		# Note: minkowski with p > 2 does not work for sparse matrices
    param_grid = {'C' : [0.003, 0.01, 0.03, 0.1], 'loss': ['hinge', 'squared_hinge'], 'n_iter': [5, 10, 30, 100, 300]}
    #param_grid = {'C' : [0.003, 0.01, 0.03, 0.1, 0.3, 1], 'loss': ['hinge'], 'n_iter': [5, 10, 30, 100, 300, 1000]}
    
    ## Predict model with best parameters optimized for quadratic_weighted_kappa
    if (gridSearch) :
        model = perform_grid_search (clf, param_grid, X, labels)    	
        pred = model.predict(X_test)
    else :
        clf.fit(X, labels)    	
        pred = clf.predict(X_test)
    return pred
开发者ID:sathishrvijay,项目名称:Kaggle-CrowdFlowerSRR,代码行数:27,代码来源:classifier.py

示例2: test_classifier_refit

def test_classifier_refit():
    # Classifier can be retrained on different labels and features.
    clf = PassiveAggressiveClassifier(max_iter=5).fit(X, y)
    assert_array_equal(clf.classes_, np.unique(y))

    clf.fit(X[:, :-1], iris.target_names[y])
    assert_array_equal(clf.classes_, iris.target_names)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:7,代码来源:test_passive_aggressive.py

示例3: PassiveAggressiveClassifier_1

def PassiveAggressiveClassifier_1(train_predictors,test_predictors,train_target,test_target):
    clf = PassiveAggressiveClassifier()
    clf.fit(train_predictors,train_target)
    predicted = clf.predict(test_predictors)
    accuracy = accuracy_score(test_target, predicted)
    print "Accuracy for Linear Model PassiveAggressiveClassifier: "+str(accuracy)
    return accuracy,predicted 
开发者ID:ineilm,项目名称:BountyApp,代码行数:7,代码来源:Models.py

示例4: test_classifier_accuracy

def test_classifier_accuracy():
    for data in (X, X_csr):
        for fit_intercept in (True, False):
            clf = PassiveAggressiveClassifier(C=1.0, n_iter=30,
                                              fit_intercept=fit_intercept,
                                              random_state=0)
            clf.fit(data, y)
            score = clf.score(data, y)
            assert_greater(score, 0.79)
开发者ID:Big-Data,项目名称:scikit-learn,代码行数:9,代码来源:test_passive_aggressive.py

示例5: train_online_model

def train_online_model(xtr, ytr, model=None):
    # Train classifier
    t0 = time.time()
    if model is None:
        model = PassiveAggressiveClassifier()
        model.fit(xtr, ytr)
    else:
        model.partial_fit(xtr, ytr)
    print "Training took %.2f seconds" % (time.time()-t0)
    return model
开发者ID:jgera,项目名称:brain-tumor-segmentation,代码行数:10,代码来源:methods.py

示例6: test_classifier_partial_fit

def test_classifier_partial_fit():
    classes = np.unique(y)
    for data in (X, X_csr):
            clf = PassiveAggressiveClassifier(C=1.0,
                                              fit_intercept=True,
                                              random_state=0)
            for t in range(30):
                clf.partial_fit(data, y, classes)
            score = clf.score(data, y)
            assert_greater(score, 0.79)
开发者ID:Big-Data,项目名称:scikit-learn,代码行数:10,代码来源:test_passive_aggressive.py

示例7: test_passive_aggressive_2

def test_passive_aggressive_2():
    """Ensure that the TPOT PassiveAggressiveClassifier outputs the same as the sklearn classifier when C == 0.0"""

    tpot_obj = TPOT()
    result = tpot_obj._passive_aggressive(training_testing_data, 0.0, 0)
    result = result[result['group'] == 'testing']

    pagg = PassiveAggressiveClassifier(C=0.0001, loss='hinge', fit_intercept=True, random_state=42)
    pagg.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, pagg.predict(testing_features))
开发者ID:ANSWER1992,项目名称:tpot,代码行数:11,代码来源:tests.py

示例8: mainworker

def mainworker(limit1,limit2):
	N=10
	l=[]
	w1=[] # +1 class
	w2=[]#-1 class
	temp=[]
	classlist=[]
	f=open("pdata.txt")
	for line in f:
        	x=(line.strip("\n")).split(",")
        	temp=[]
        	for i in xrange(len(x)):
			x[i]=int(x[i])
			temp.append(x[i])
        	clas=temp.pop()
		temp=temp[:limit1]+temp[limit2+1:]
        	l.append(temp)
       		classlist.append(clas)
       		"""if(temp[-1]==-1):
                	w2.append(temp)
       		else:
                	w1.append(temp)"""
	f.close()
	X=np.array(l)
	y=np.array(classlist)

	X=np.array(l)
	y=np.array(classlist)
	karray=[2,3,4,5]
	for k in karray:
		kf = cross_validation.KFold(11054, n_folds=k)
		averager=[]
		for train_index,test_index in kf:
		#print("TRAIN:", train_index, "TEST:", test_index)
	   		X_train, X_test = X[train_index], X[test_index]
	   		y_train, y_test = y[train_index], y[test_index]
		#print X_train, len(X_test), len(y_train), len(y_test)
			train_data=[]
	        	test_data=[]
        		train_label=[]
       			test_label=[]
			X1 = X_train#train_data
			Y1 = y_train#train_label	
			clf = PassiveAggressiveClassifier()
			#clf = svm.SVC(kernel='linear')
			clf.fit(X1,Y1)
			Z = X_test#test_data
			predicted = clf.predict(Z)
			accuracy = getAccuracy(predicted, y_test)#test_label)
			averager.append(accuracy)
		answer=np.mean(averager)
		print "The mean for",k,"fold is:"
		print answer
开发者ID:Shreekavithaa,项目名称:Detecting_malicious_URLs,代码行数:53,代码来源:passiveaggressive.py

示例9: TrainSVM

def TrainSVM(data,labels):
	usealgo = 1
	if usealgo == 0:
		from sklearn.linear_model import PassiveAggressiveClassifier
		clf=PassiveAggressiveClassifier(class_weight='balanced',n_jobs=-1,n_iter=15,fit_intercept=True)
	elif usealgo ==1:
		clf = SVC(probability= True,decision_function_shape='ovr',random_state=np.random.randint(1000),kernel="linear")

	elif usealgo ==2:
		from sklearn.svm import LinearSVC
		clf = LinearSVC()

	clf.fit(data,labels)
	return clf
开发者ID:NevesLucas,项目名称:BE562_FinalProject,代码行数:14,代码来源:main.py

示例10: __init__

class DeployedClassifierFactory:
	def __init__(self, term_doc_matrix, term_doc_matrix_factory, category, nlp=None):
		'''This is a class that enables one to train and save a classification model.

		Parameters
		----------
		term_doc_matrix : TermDocMatrix
		term_doc_matrix_factory : TermDocMatrixFactory
		category : str
			Category name
		nlp : spacy parser
		'''
		self._term_doc_matrix = term_doc_matrix
		self._term_doc_matrix_factory = term_doc_matrix_factory
		assert term_doc_matrix_factory._nlp is None
		assert term_doc_matrix_factory.category_text_iter is None
		self._category = category
		self._clf = None
		self._proba = None

	def passive_aggressive_train(self):
		'''Trains passive aggressive classifier

		'''
		self._clf = PassiveAggressiveClassifier(n_iter=50, C=0.2, n_jobs=-1, random_state=0)
		self._clf.fit(self._term_doc_matrix._X, self._term_doc_matrix._y)
		y_dist = self._clf.decision_function(self._term_doc_matrix._X)
		pos_ecdf = ECDF(y_dist[y_dist >= 0])
		neg_ecdf = ECDF(y_dist[y_dist <= 0])

		def proba_function(distance_from_hyperplane):
			if distance_from_hyperplane > 0:
				return pos_ecdf(distance_from_hyperplane) / 2. + 0.5
			elif distance_from_hyperplane < 0:
				return pos_ecdf(distance_from_hyperplane) / 2.
			return 0.5

		self._proba = proba_function
		return self

	def build(self):
		'''Builds Depoyed Classifier
		'''
		if self._clf is None:
			raise NeedToTrainExceptionBeforeDeployingException()
		return DeployedClassifier(self._category,
		                          self._term_doc_matrix._category_idx_store,
		                          self._term_doc_matrix._term_idx_store,
		                          self._term_doc_matrix_factory)
开发者ID:JasonKessler,项目名称:scattertext,代码行数:49,代码来源:DeployedClassifier.py

示例11: test_classifier_accuracy

def test_classifier_accuracy():
    for data in (X, X_csr):
        for fit_intercept in (True, False):
            for average in (False, True):
                clf = PassiveAggressiveClassifier(
                    C=1.0, max_iter=30, fit_intercept=fit_intercept,
                    random_state=1, average=average, tol=None)
                clf.fit(data, y)
                score = clf.score(data, y)
                assert_greater(score, 0.79)
                if average:
                    assert hasattr(clf, 'average_coef_')
                    assert hasattr(clf, 'average_intercept_')
                    assert hasattr(clf, 'standard_intercept_')
                    assert hasattr(clf, 'standard_coef_')
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:15,代码来源:test_passive_aggressive.py

示例12: test_classifier_correctness

def test_classifier_correctness(loss):
    y_bin = y.copy()
    y_bin[y != 1] = -1

    clf1 = MyPassiveAggressive(
        C=1.0, loss=loss, fit_intercept=True, n_iter=2)
    clf1.fit(X, y_bin)

    for data in (X, X_csr):
        clf2 = PassiveAggressiveClassifier(
            C=1.0, loss=loss, fit_intercept=True, max_iter=2,
            shuffle=False, tol=None)
        clf2.fit(data, y_bin)

        assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:15,代码来源:test_passive_aggressive.py

示例13: test_classifier_partial_fit

def test_classifier_partial_fit():
    classes = np.unique(y)
    for data in (X, X_csr):
        for average in (False, True):
            clf = PassiveAggressiveClassifier(
                C=1.0, fit_intercept=True, random_state=0,
                average=average, max_iter=5)
            for t in range(30):
                clf.partial_fit(data, y, classes)
            score = clf.score(data, y)
            assert_greater(score, 0.79)
            if average:
                assert hasattr(clf, 'average_coef_')
                assert hasattr(clf, 'average_intercept_')
                assert hasattr(clf, 'standard_intercept_')
                assert hasattr(clf, 'standard_coef_')
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:16,代码来源:test_passive_aggressive.py

示例14: PassiveAggressiveModel

class PassiveAggressiveModel(BaseModel):
    
    def __init__(self, cached_features):
        BaseModel.__init__(self, cached_features)
        self.model = PassiveAggressiveClassifier(loss='squared_hinge', C=1.0, random_state=1)

    def _predict_internal(self, X_test):
        return self.model.predict(X_test)
开发者ID:sjuvekar,项目名称:Kaggle-Dato,代码行数:8,代码来源:passive_aggressive_model.py

示例15: test_classifier_correctness

def test_classifier_correctness():
    y_bin = y.copy()
    y_bin[y != 1] = -1

    for loss in ("hinge", "squared_hinge"):

        clf1 = MyPassiveAggressive(C=1.0,
                                   loss=loss,
                                   fit_intercept=True,
                                   n_iter=2)
        clf1.fit(X, y_bin)

        clf2 = PassiveAggressiveClassifier(C=1.0,
                                           loss=loss,
                                           fit_intercept=True,
                                           n_iter=2)
        clf2.fit(X, y_bin)

        assert_array_almost_equal(clf1.w, clf2.coef_.ravel())
开发者ID:dengemann,项目名称:scikit-learn,代码行数:19,代码来源:test_passive_aggressive.py


注:本文中的sklearn.linear_model.PassiveAggressiveClassifier类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。