本文整理汇总了Python中sklearn.linear_model.ARDRegression.fit方法的典型用法代码示例。如果您正苦于以下问题:Python ARDRegression.fit方法的具体用法?Python ARDRegression.fit怎么用?Python ARDRegression.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.linear_model.ARDRegression
的用法示例。
在下文中一共展示了ARDRegression.fit方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_check_is_fitted
# 需要导入模块: from sklearn.linear_model import ARDRegression [as 别名]
# 或者: from sklearn.linear_model.ARDRegression import fit [as 别名]
def test_check_is_fitted():
# Check is ValueError raised when non estimator instance passed
assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_")
assert_raises(TypeError, check_is_fitted, "SVR", "support_")
ard = ARDRegression()
svr = SVR()
try:
assert_raises(NotFittedError, check_is_fitted, ard, "coef_")
assert_raises(NotFittedError, check_is_fitted, svr, "support_")
except ValueError:
assert False, "check_is_fitted failed with ValueError"
# NotFittedError is a subclass of both ValueError and AttributeError
try:
check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s")
except ValueError as e:
assert_equal(str(e), "Random message ARDRegression, ARDRegression")
try:
check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s")
except AttributeError as e:
assert_equal(str(e), "Another message SVR, SVR")
ard.fit(*make_blobs())
svr.fit(*make_blobs())
assert_equal(None, check_is_fitted(ard, "coef_"))
assert_equal(None, check_is_fitted(svr, "support_"))
示例2: ARDRegression_on_fold
# 需要导入模块: from sklearn.linear_model import ARDRegression [as 别名]
# 或者: from sklearn.linear_model.ARDRegression import fit [as 别名]
def ARDRegression_on_fold(feature_sets, train, test, y, y_all, X, dim, dimsum, learn_options):
'''
'''
clf = ARDRegression()
clf.fit(X[train], y[train][:, 0])
y_pred = clf.predict(X[test])[:, None]
return y_pred, clf
示例3: fit_model_16
# 需要导入模块: from sklearn.linear_model import ARDRegression [as 别名]
# 或者: from sklearn.linear_model.ARDRegression import fit [as 别名]
def fit_model_16(self,toWrite=False):
model = ARDRegression()
for data in self.cv_data:
X_train, X_test, Y_train, Y_test = data
model.fit(X_train,Y_train)
pred = model.predict(X_test)
print("Model 16 score %f" % (logloss(Y_test,pred),))
if toWrite:
f2 = open('model16/model.pkl','w')
pickle.dump(model,f2)
f2.close()
示例4: ARDRegression
# 需要导入模块: from sklearn.linear_model import ARDRegression [as 别名]
# 或者: from sklearn.linear_model.ARDRegression import fit [as 别名]
lambda_ = 4.
w = np.zeros(n_features)
# Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:
w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
# Create noite with a precision alpha of 50.
alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
# Create the target
y = np.dot(X, w) + noise
###############################################################################
# Fit the ARD Regression
clf = ARDRegression(compute_score=True)
clf.fit(X, y)
ols = LinearRegression()
ols.fit(X, y)
###############################################################################
# Plot the true weights, the estimated weights and the histogram of the
# weights
plt.figure(figsize=(6, 5))
plt.title("Weights of the model")
plt.plot(clf.coef_, 'b-', label="ARD estimate")
plt.plot(ols.coef_, 'r--', label="OLS estimate")
plt.plot(w, 'g-', label="Ground truth")
plt.xlabel("Features")
plt.ylabel("Values of the weights")
plt.legend(loc=1)
示例5: ARDRegression
# 需要导入模块: from sklearn.linear_model import ARDRegression [as 别名]
# 或者: from sklearn.linear_model.ARDRegression import fit [as 别名]
lambda_ = 4.
w = np.zeros(n_features)
# Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:
w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
# Create noise with a precision alpha of 50.
alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
# Create the target
y = np.dot(X, w) + noise
###############################################################################
# Fit the ARD Regression
clf = ARDRegression(compute_score=True)
clf.fit(X, y)
ols = LinearRegression()
ols.fit(X, y)
###############################################################################
# Plot the true weights, the estimated weights, the histogram of the
# weights, and predictions with standard deviations
plt.figure(figsize=(6, 5))
plt.title("Weights of the model")
plt.plot(clf.coef_, color='darkblue', linestyle='-', linewidth=2,
label="ARD estimate")
plt.plot(ols.coef_, color='yellowgreen', linestyle=':', linewidth=2,
label="OLS estimate")
plt.plot(w, color='orange', linestyle='-', linewidth=2, label="Ground truth")
plt.xlabel("Features")
示例6: standardizeExpression
# 需要导入模块: from sklearn.linear_model import ARDRegression [as 别名]
# 或者: from sklearn.linear_model.ARDRegression import fit [as 别名]
#Train normalizer on RNA seq, apply to rescaled gene expression
if standardizeByTCGA:
rnaSeqExpressionNormalized, L2Normalizer = standardizeExpression(rnaSeqExpression, L2Normalizer, log10Normalize)
rescaledExpressionClinical = L2Normalizer.transform(np.log10(rescaledExpressionClinical+1))
# else:
# prunedRnaSeqExpressionNormalized, L2Normalizer = standardizeExpression(prunedRnaSeqExpression.ix[cellExpression.shape[0],;], L2Normalizer, log10Normalize)
# prunedArrayExpressionNormalized = L2Normalizer.transform(np.log10(prunedRescaledExpressionClinical+1))
#Load Docetaxel IC50 Data
docetaxelData = getDrugIC50('Docetaxel', inputFolder)
#Assemble training data with both IC50 and expression data
docetaxelData = pd.merge(docetaxelData, rnaSeqExpressionNormalized, how='inner', left_index=True, right_index=True).drop('cell_line', axis=1)
#Train Docetaxel model
clf.fit(docetaxelData.drop(['IC50'], axis=1), docetaxelData['IC50'])
#Validate on Clinical Data
resistance_predictions = clf.predict(rescaledExpressionClinical)
#Calculates ROC, first 11 samples correspond to sensitive patients, last 13 are resistant
roc_auc_score(np.hstack((np.repeat(0,11), np.repeat(1,13))), resistance_predictions)
roc_data = pd.DataFrame()
roc_data['fpr'], roc_data['tpr'],roc_data['thresholds'] = roc_curve(np.hstack((np.repeat(0,11), np.repeat(1,13))), resistance_predictions)
#Plot Results
from bokeh.charts import show, output_file
from bokeh.plotting import figure
示例7: learn_model
# 需要导入模块: from sklearn.linear_model import ARDRegression [as 别名]
# 或者: from sklearn.linear_model.ARDRegression import fit [as 别名]
def learn_model(x_mat, y):
#model = SVR(kernel='rbf')
model = ARDRegression()
model.fit(x_mat, y)
return model
示例8: load_boston
# 需要导入模块: from sklearn.linear_model import ARDRegression [as 别名]
# 或者: from sklearn.linear_model.ARDRegression import fit [as 别名]
from sklearn.linear_model import ARDRegression
from sklearn.model_selection import cross_val_predict
from sklearn.datasets import load_boston
from sklearn.metrics import explained_variance_score, mean_squared_error
import numpy as np
import pylab as pl
#Loading boston datasets
boston = load_boston()
# Creating Regression Design Matrix
x = boston.data
# Creating target dataset
y = boston.target
# Create ARDRegression Regression object
ARD= ARDRegression(alpha_1=0.01, alpha_2=0.01, lambda_1=1e-06, lambda_2=1e-06)
# Fitting a linear model using the dataset
ARD.fit(x,y)
# Y predicted values
yp = ARD.predict(x)
#Calculation 10-Fold CV
yp_cv = cross_val_predict(ARD, x, y, cv=10)
#Printing RMSE and Explained Variance
Evariance=explained_variance_score(y,yp)
Evariance_cv=explained_variance_score(y,yp_cv)
RMSE =np.sqrt(mean_squared_error(y,yp))
RMSECV=np.sqrt(mean_squared_error(y,yp_cv))
print('Method: ARDRegression Regression')
print('RMSE on the dataset: %.4f' %RMSE)
print('RMSE on 10-fold CV: %.4f' %RMSECV)
print('Explained Variance Regression Score on the dataset: %.4f' %Evariance)
print('Explained Variance Regression 10-fold CV: %.4f' %Evariance_cv)
#plotting real vs predicted data