当前位置: 首页>>代码示例>>Python>>正文


Python IterativeImputer.n_iter_方法代码示例

本文整理汇总了Python中sklearn.impute.IterativeImputer.n_iter_方法的典型用法代码示例。如果您正苦于以下问题:Python IterativeImputer.n_iter_方法的具体用法?Python IterativeImputer.n_iter_怎么用?Python IterativeImputer.n_iter_使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.impute.IterativeImputer的用法示例。


在下文中一共展示了IterativeImputer.n_iter_方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_iterative_imputer_zero_iters

# 需要导入模块: from sklearn.impute import IterativeImputer [as 别名]
# 或者: from sklearn.impute.IterativeImputer import n_iter_ [as 别名]
def test_iterative_imputer_zero_iters():
    rng = np.random.RandomState(0)

    n = 100
    d = 10
    X = sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()
    missing_flag = X == 0
    X[missing_flag] = np.nan

    imputer = IterativeImputer(max_iter=0)
    X_imputed = imputer.fit_transform(X)
    # with max_iter=0, only initial imputation is performed
    assert_allclose(X_imputed, imputer.initial_imputer_.transform(X))

    # repeat but force n_iter_ to 0
    imputer = IterativeImputer(max_iter=5).fit(X)
    # transformed should not be equal to initial imputation
    assert not np.all(imputer.transform(X) ==
                      imputer.initial_imputer_.transform(X))

    imputer.n_iter_ = 0
    # now they should be equal as only initial imputation is done
    assert_allclose(imputer.transform(X),
                    imputer.initial_imputer_.transform(X))
开发者ID:psorianom,项目名称:scikit-learn,代码行数:26,代码来源:test_impute.py


注:本文中的sklearn.impute.IterativeImputer.n_iter_方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。