当前位置: 首页>>代码示例>>Python>>正文


Python GaussianHMM._set_means方法代码示例

本文整理汇总了Python中sklearn.hmm.GaussianHMM._set_means方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianHMM._set_means方法的具体用法?Python GaussianHMM._set_means怎么用?Python GaussianHMM._set_means使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.hmm.GaussianHMM的用法示例。


在下文中一共展示了GaussianHMM._set_means方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: GaussianHMM

# 需要导入模块: from sklearn.hmm import GaussianHMM [as 别名]
# 或者: from sklearn.hmm.GaussianHMM import _set_means [as 别名]
means = np.array([	[  0.0, 0.0 ],
					[ np.log1p(args.coverage), 0.0 ],
					[ 0.0, np.log1p(args.coverage) ],
					[ np.log1p(args.coverage/2), np.log1p(args.coverage/2) ],
					[ np.log1p(args.coverage), np.log1p(args.coverage) ] ])
cv = 1.0
covars = np.array([ [ 0.01, 0.01 ],
					[ cv, 0.01 ],
					[ 0.01, cv ],
					[ cv/2, cv/2 ],
					[ cv, cv ] ])
hidden = [ "private" ] + ref_samples + [ "heterozygous","pseudohet" ]

hmm = GaussianHMM(n_components = len(means), random_state = rs)
hmm._set_means(means)
hmm._set_covars(covars)

## filter sites; compute observation sequence as log(1+count)
keep = np.logical_and((counts.max(1) < args.X_max*args.coverage), (counts.sum(1) > -1.0))
counts = counts[ keep,: ]
obs = np.log1p(counts)
starts = np.array([ start for start,end in ivls ]).reshape( (len(ivls), 1) )
starts = starts[ keep,: ]

## run hmm
states =  hmm.decode(obs)

## print result to stdout
for i in range(0, counts.shape[0]):
	print starts[i,0], obs[i,0], obs[i,1], hidden[ states[1][i] ]
开发者ID:andrewparkermorgan,项目名称:snoop,代码行数:32,代码来源:kmer_genotyper.py


注:本文中的sklearn.hmm.GaussianHMM._set_means方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。