本文整理汇总了Python中sklearn.gaussian_process.GaussianProcessClassifier.predict方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianProcessClassifier.predict方法的具体用法?Python GaussianProcessClassifier.predict怎么用?Python GaussianProcessClassifier.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.gaussian_process.GaussianProcessClassifier
的用法示例。
在下文中一共展示了GaussianProcessClassifier.predict方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_predict_consistent
# 需要导入模块: from sklearn.gaussian_process import GaussianProcessClassifier [as 别名]
# 或者: from sklearn.gaussian_process.GaussianProcessClassifier import predict [as 别名]
def test_predict_consistent():
""" Check binary predict decision has also predicted probability above 0.5.
"""
for kernel in kernels:
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
assert_array_equal(gpc.predict(X),
gpc.predict_proba(X)[:, 1] >= 0.5)
示例2: test_multi_class
# 需要导入模块: from sklearn.gaussian_process import GaussianProcessClassifier [as 别名]
# 或者: from sklearn.gaussian_process.GaussianProcessClassifier import predict [as 别名]
def test_multi_class(kernel):
# Test GPC for multi-class classification problems.
gpc = GaussianProcessClassifier(kernel=kernel)
gpc.fit(X, y_mc)
y_prob = gpc.predict_proba(X2)
assert_almost_equal(y_prob.sum(1), 1)
y_pred = gpc.predict(X2)
assert_array_equal(np.argmax(y_prob, 1), y_pred)
示例3: trainPredict
# 需要导入模块: from sklearn.gaussian_process import GaussianProcessClassifier [as 别名]
# 或者: from sklearn.gaussian_process.GaussianProcessClassifier import predict [as 别名]
def trainPredict(subjectid, makeplot=False):
print("testing participant " + subjectid)
# Load training data from the file matlab generates
traindata = np.genfromtxt('csvdata/' + subjectid +
'_sim.csv', delimiter=',',
missing_values=['NaN', 'nan'],
filling_values=None)
# Clean + downsample this data
trainx, trainy = cleandata(traindata, downsamplefactor=20)
# Train a Gaussian Process
anisokern = kernels.RBF() # default kernel
gp = GaussianProcessClassifier(kernel=anisokern) # Initialize the GPC
gp.fit(trainx, trainy) # train this class on the data
trainx = trainy = None # Discard all training data to preserve memory
# load test data
testdata = np.genfromtxt('csvdata/' + subjectid +
'_rival.csv', delimiter=',',
missing_values=['NaN', 'nan'],
filling_values=None)
testx, testy = cleandata(testdata, downsamplefactor=4) # clean data
testdata = None # clear from memory
# work out percentage in percept for each data point:
percentages, nextpercept = assign_percentage(testy)
# get a prediction for all points in the test data:
predicty = gp.predict(testx)
proby = gp.predict_proba(testx)
if makeplot:
summaryplot(participant, testx, testy, predicty, proby, gp)
# Summarise prediction by reported percept
meanprediction = {'mean' + percept:
proby[testy == value, 1].mean()
for percept, value in perceptindices.iteritems()}
predictiondev = {'stdev' + percept:
proby[testy == value, 1].std()
for percept, value in perceptindices.iteritems()}
predictionaccuracy = {'acc' + percept:
(predicty[testy == value] ==
testy[testy == value]).mean()
for percept, value in perceptindices.iteritems()}
# Summarise prediction by percentage in percept
predictioncourse = {'timecourse' + percept + str(cutoff):
proby[(testy == value) &
(percentages < cutoff) &
(percentages > cutoff - 0.1), 1].mean()
for percept, value in perceptindices.iteritems()
for cutoff in np.linspace(0.1, 1, 10)}
# Summarise mixed percept time courses by the next percept
nextcourse = {'nextcourse' + percept + str(cutoff):
proby[(testy == 0) &
(percentages < cutoff) &
(percentages > cutoff - 0.1) &
(nextpercept == perceptindices[percept]), 1].mean()
for percept in ['highfreq', 'lowfreq']
for cutoff in np.linspace(0.1, 1, 10)}
afterdominant = {'after' + percept + "_" + after + "_" + str(cutoff):
proby[(testy == perceptindices[percept]) &
(percentages < cutoff) &
(percentages > cutoff - 0.1) &
(nextpercept == perceptindices[after]), 1].mean()
for percept, after in [('highfreq', 'mixed'),
('highfreq', 'lowfreq'),
('lowfreq', 'mixed'),
('lowfreq', 'highfreq')]
for cutoff in np.linspace(0.1, 1, 10)}
# Only return the summarised data
return meanprediction, predictiondev, predictionaccuracy, \
predictioncourse, nextcourse, afterdominant