本文整理汇总了Python中sklearn.feature_selection.SelectFpr.transform方法的典型用法代码示例。如果您正苦于以下问题:Python SelectFpr.transform方法的具体用法?Python SelectFpr.transform怎么用?Python SelectFpr.transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.feature_selection.SelectFpr
的用法示例。
在下文中一共展示了SelectFpr.transform方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: multisplit
# 需要导入模块: from sklearn.feature_selection import SelectFpr [as 别名]
# 或者: from sklearn.feature_selection.SelectFpr import transform [as 别名]
def multisplit(skf,X,y,stepsize=1000):
total_score = 0
for train_index, test_index in skf:
wl = []
pred1 = np.matrix([])
# Training
for x in range(0, len(X[0]), stepsize):
clf1 = plib.classif(X[train_index, x:x + stepsize], y[train_index])
tmp_p = np.matrix(clf1.decision_function(X[train_index, x:x + stepsize]))
if pred1.size == 0:
pred1 = tmp_p
else:
pred1 = np.concatenate((pred1, tmp_p), axis=1)
wl.append(clf1)
#selectf = SelectKBest(f_classif, k=5).fit(pred1, y[train_index])
selectf = SelectFpr().fit(pred1, y[train_index])
clf3 = AdaBoostClassifier(n_estimators=100)
#clf3 = svm.SVC(class_weight='auto')
#clf3 = RandomForestClassifier(n_estimators=20)
clf3.fit(selectf.transform(pred1), y[train_index])
# Testing
predtest = np.matrix([])
k = 0
for x in range(0, len(X[0]), stepsize):
tmp_p = np.matrix(wl[k].decision_function(X[test_index, x:x + stepsize]))
if predtest.size == 0:
predtest = tmp_p
else:
predtest = np.concatenate((predtest, tmp_p), axis=1)
k += 1
# Final prediction
predfinal = clf3.predict(selectf.transform(predtest))
print "Target : ", y[test_index]
print "Prediction : ", predfinal
matchs = np.equal(predfinal, y[test_index])
score = np.divide(np.sum(matchs), np.float64(matchs.size))
total_score = score + total_score
return np.divide(total_score, skf.n_folds)
示例2: train_decisiontree_FPR
# 需要导入模块: from sklearn.feature_selection import SelectFpr [as 别名]
# 或者: from sklearn.feature_selection.SelectFpr import transform [as 别名]
def train_decisiontree_FPR(configurationname, train_data, score_function, undersam=False, oversam=False, export=False):
print("Training with configuration " + configurationname)
X_train, y_train, id_to_a_train = train_data
dtc = DecisionTreeClassifier(random_state=0)
print("Feature Selection")
# selector = SelectFpr(score_function)
selector = SelectFpr(score_function)
result = selector.fit(X_train, y_train)
X_train = selector.transform(X_train)
fitted_ids = [i for i in result.get_support(indices=True)]
print("Apply Resampling")
print(Counter(y_train))
if undersam and not oversam:
renn = RepeatedEditedNearestNeighbours()
X_train, y_train = renn.fit_resample(X_train, y_train)
if oversam and not undersam:
# feature_indices_array = list(range(len(f_to_id)))
# smote_nc = SMOTENC(categorical_features=feature_indices_array, random_state=0)
# X_train, y_train = smote_nc.fit_resample(X_train, y_train)
sm = SMOTE(random_state=42)
X_train, y_train = sm.fit_resample(X_train, y_train)
if oversam and undersam:
smote_enn = SMOTEENN(random_state=0)
X_train, y_train = smote_enn.fit_resample(X_train, y_train)
print(Counter(y_train))
print("Train Classifier")
dtc = dtc.fit(X_train, y_train, check_input=True)
if export:
export_graphviz(dtc, out_file=DATAP + "/temp/trees/sltree_" + configurationname + ".dot", filled=True)
transform(fitted_ids)
print("Self Accuracy: " + str(dtc.score(X_train, y_train)))
return selector, dtc
示例3: SelectFpr
# 需要导入模块: from sklearn.feature_selection import SelectFpr [as 别名]
# 或者: from sklearn.feature_selection.SelectFpr import transform [as 别名]
print "SelectPercentile -- chi2"
print X_fitted_4.scores_
print X_fitted_4.pvalues_
print X_fitted_4.get_support()
X_transformed_4 = X_fitted_4.transform(X)
print X_transformed_4.shape
#SelectFpr --- chi2
from sklearn.feature_selection import SelectFpr
from sklearn.feature_selection import chi2
X_fitted_5 = SelectFpr(chi2, alpha=2.50017968e-15).fit(X,y)
print "SelectFpr --- chi2"
print X_fitted_5.scores_
print X_fitted_5.pvalues_
print X_fitted_5.get_support()
X_transformed_5 = X_fitted_5.transform(X)
print X_transformed_5.shape
#SelectFpr --- f_classif
from sklearn.feature_selection import SelectFpr
from sklearn.feature_selection import f_classif
X_fitted_6 = SelectFpr(f_classif, alpha=1.66966919e-31 ).fit(X,y)
print "SelectFpr --- f_classif"
print X_fitted_6.scores_
print X_fitted_6.pvalues_
print X_fitted_6.get_support()
X_transformed_6 = X_fitted_6.transform(X)
print X_transformed_6.shape
# SelectFdr 和 SelectFwe 的用法和上面类似,只是选择特征时候的依据不同,真正决定得分不同的是
#统计检验方法,从上面可以看到,使用f_classif的得出的参数都相同。