当前位置: 首页>>代码示例>>Python>>正文


Python SelectFdr.fit_transform方法代码示例

本文整理汇总了Python中sklearn.feature_selection.SelectFdr.fit_transform方法的典型用法代码示例。如果您正苦于以下问题:Python SelectFdr.fit_transform方法的具体用法?Python SelectFdr.fit_transform怎么用?Python SelectFdr.fit_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.feature_selection.SelectFdr的用法示例。


在下文中一共展示了SelectFdr.fit_transform方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: featureFitting

# 需要导入模块: from sklearn.feature_selection import SelectFdr [as 别名]
# 或者: from sklearn.feature_selection.SelectFdr import fit_transform [as 别名]
def featureFitting( filename, X, y, featureNames,optimalFlag, kbest=20, alpha=0.05,model=None):
    '''
    Gets the K-best features (filtered by FDR, then select best ranked by t-test , more advanced options can be implemented).
    Save the data/matrix with the resulting/kept features to a new output file, "REDUCED_Feat.csv"
    '''
    a=alpha
    FD = SelectFdr(alpha=a)
    X = FD.fit_transform(X,y)

    selectK = SelectKBest(k=kbest)
    selectK.fit(X,y)
    selectK_mask=selectK.get_support()
    K_featnames = featureNames[selectK_mask]
    print("K_featnames: %s" %(K_featnames))
    Reduced_df = pd.read_csv(filename, index_col=0)
    Reduced_df = Reduced_df[Reduced_df.columns[selectK_mask]]
    Reduced_df.to_csv('REDUCED_Feat.csv')
    return Reduced_df
开发者ID:nadavrap,项目名称:ProFET,代码行数:20,代码来源:Model_trainer.py

示例2: str

# 需要导入模块: from sklearn.feature_selection import SelectFdr [as 别名]
# 或者: from sklearn.feature_selection.SelectFdr import fit_transform [as 别名]
    fileName = r'\trainingSetFeatures.csv'

    # filePath = r'E:\Dropbox\Dropbox\BioInformatics Lab\AA_Information\CODE\Feature_Extract\test_seq\Chap'
    filePath = str(input('Input DIRRectory containing TrainingData csv '))

    ## features, labels, lb_encoder,featureNames = load_data(filename, 'file')
    features, labels, lb_encoder,featureNames = load_data(filePath+fileName, 'file')

    X, y = features, labels
    print('len(set(y)',len(set(y)))
    print(X.shape,"X = samples, features")
    scale = StandardScaler(copy=False)
    X = scale.fit_transform(X)

    FD = SelectFdr(alpha=0.0005)
    FD_K = SelectPercentile(percentile=70)
    X = FD.fit_transform(X,y)
    print(X.shape,"X post FDR alpha filter")
    X_FD = FD_K.fit_transform(X,y)
    print(X_FD.shape,"X post FDR+K-best alpha filter")

    print("\n BASE X models: \n")
    ModelParam_GridSearch(X,y,cv=Kcv)
    '''
    pca = PCA(n_components='mle')
    X_PCA = pca.fit_transform(X)
    print(X_PCA.shape,"X - PCA,mle")
    ModelParam_GridSearch(X_PCA,y,cv=Kcv)
    '''

开发者ID:MichaelDoron,项目名称:ProFET,代码行数:31,代码来源:PipeTasks.py


注:本文中的sklearn.feature_selection.SelectFdr.fit_transform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。