当前位置: 首页>>代码示例>>Python>>正文


Python Memory.cache方法代码示例

本文整理汇总了Python中sklearn.externals.joblib.Memory.cache方法的典型用法代码示例。如果您正苦于以下问题:Python Memory.cache方法的具体用法?Python Memory.cache怎么用?Python Memory.cache使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.externals.joblib.Memory的用法示例。


在下文中一共展示了Memory.cache方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
    def fit(self, X, y=None):
        """
        Compute agglomerative clustering.

        Parameters
        ----------
        X : array-like, shape=(n_samples, n_features)

        Returns
        -------
        self
        """

        memory = self.memory
        if isinstance(memory, six.string_types):
            memory = Memory(cachedir=memory, verbose=0)
        if self.n_landmarks is None:
            distances = memory.cache(pdist)(X, self.metric)
        else:
            if self.landmark_strategy == 'random':
                land_indices = check_random_state(self.random_state).randint(len(X), size=self.n_landmarks)
            else:
                land_indices = np.arange(len(X))[::(len(X)//self.n_landmarks)][:self.n_landmarks]
            distances = memory.cache(pdist)(X[land_indices], self.metric)

        tree = memory.cache(linkage)(distances, method=self.linkage)
        self.landmark_labels_ = fcluster(tree, criterion='maxclust', t=self.n_clusters) - 1

        if self.n_landmarks is None:
            self.landmarks_ = X
        else:
            self.landmarks_ = X[land_indices]

        return self
开发者ID:synapticarbors,项目名称:msmbuilder-1,代码行数:36,代码来源:agglomerative.py

示例2: _delete_orientation

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
    def _delete_orientation(self):
        """
        Delete orientation metadata. Garbage orientation metadata can lead to
        severe mis-registration trouble.

        """

        # prepare for smart caching
        if self.scratch is None:
            self.scratch = self.output_dir
        cache_dir = os.path.join(self.scratch, 'cache_dir')
        if not os.path.exists(cache_dir):
            os.makedirs(cache_dir)
        mem = Memory(cachedir=cache_dir, verbose=5)

        # deleteorient for func
        for attr in ['n_sessions', 'session_output_dirs']:
            if getattr(self, attr) is None:
                warnings.warn("'%s' attribute of is None! Skipping" % attr)
                break
        else:
            self.func = [mem.cache(delete_orientation)(
                self.func[sess], self.session_output_dirs[sess])
                         for sess in range(self.n_sessions)]

        # deleteorient for anat
        if self.anat is not None:
            self.anat = mem.cache(delete_orientation)(
                self.anat, self.anat_output_dir)
开发者ID:AlexandreAbraham,项目名称:pypreprocess,代码行数:31,代码来源:subject_data.py

示例3: _cache

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
    def _cache(self, func, memory_level=1, **kwargs):
        """ Return a joblib.Memory object if necessary.

        The memory_level determines the level above which the wrapped
        function output is cached. By specifying a numeric value for
        this level, the user can to control the amount of cache memory
        used. This function will cache the function call or not
        depending on the cache level.

        Parameters
        ----------
        func: python function
            The function which output is to be cached.

        memory_level: integer
            The memory_level from which caching must be enabled for the wrapped
            function.

        Returns
        -------
        Either the original function, if there is no need to cache it (because
        the requested level is lower than the value given to _cache()) or a
        joblib.Memory object that wraps the function func.
        """

        # Creates attributes if they don't exist
        # This is to make creating them in __init__() optional.
        if not hasattr(self, "memory_level"):
            self.memory_level = 0
        if not hasattr(self, "memory"):
            self.memory = Memory(cachedir=None)

        # If cache level is 0 but a memory object has been provided, set
        # memory_level to 1 with a warning.
        if self.memory_level == 0:
            if (isinstance(self.memory, basestring)
                    or self.memory.cachedir is not None):
                warnings.warn("memory_level is currently set to 0 but "
                              "a Memory object has been provided. "
                              "Setting memory_level to 1.")
                self.memory_level = 1

        if self.memory_level < memory_level:
            mem = Memory(cachedir=None)
            return mem.cache(func, **kwargs)
        else:
            memory = self.memory
            if isinstance(memory, basestring):
                memory = Memory(cachedir=memory)
            if not isinstance(memory, Memory):
                raise TypeError("'memory' argument must be a string or a "
                                "joblib.Memory object.")
            if memory.cachedir is None:
                warnings.warn("Caching has been enabled (memory_level = %d) but no"
                              " Memory object or path has been provided (parameter"
                              " memory). Caching deactivated for function %s." %
                              (self.memory_level, func.func_name))
            return memory.cache(func, **kwargs)
开发者ID:dengemann,项目名称:tutorial,代码行数:60,代码来源:utils.py

示例4: fit

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
    def fit(self, niimgs, y=None):
        """Compute the mask corresponding to the data

        Parameters
        ----------
        niimgs: list of filenames or NiImages
            Data on which the mask must be calculated. If this is a list,
            the affine is considered the same for all.
        """

        memory = self.memory
        if isinstance(memory, basestring):
            memory = Memory(cachedir=memory)

        # Load data (if filenames are given, load them)
        if self.verbose > 0:
            print "[%s.fit] Loading data from %s" % (
                self.__class__.__name__,
                utils._repr_niimgs(niimgs)[:200])
        data = []
        for niimg in niimgs:
            # Note that data is not loaded into memory at this stage
            # if niimg is a string
            data.append(utils.check_niimgs(niimg, accept_3d=True))

        # Compute the mask if not given by the user
        if self.mask is None:
            if self.verbose > 0:
                print "[%s.fit] Computing the mask" % self.__class__.__name__
            mask = memory.cache(masking.compute_multi_epi_mask,
                                ignore=['verbose'])(
                                    niimgs,
                                    connected=self.mask_connected,
                                    opening=self.mask_opening,
                                    lower_cutoff=self.mask_lower_cutoff,
                                    upper_cutoff=self.mask_upper_cutoff,
                                    n_jobs=self.n_jobs,
                                    verbose=(self.verbose - 1))
            self.mask_img_ = Nifti1Image(mask.astype(np.int), data[0].get_affine())
        else:
            self.mask_img_ = utils.check_niimg(self.mask)

        # If resampling is requested, resample also the mask
        # Resampling: allows the user to change the affine, the shape or both
        if self.verbose > 0:
            print "[%s.transform] Resampling mask" % self.__class__.__name__
        self.mask_img_ = memory.cache(resampling.resample_img)(
            self.mask_img_,
            target_affine=self.target_affine,
            target_shape=self.target_shape,
            copy=(self.target_affine is not None and
                  self.target_shape is not None))

        return self
开发者ID:VirgileFritsch,项目名称:pypreprocess,代码行数:56,代码来源:nifti_multi_masker.py

示例5: _fit

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
    def _fit(self, X, y=None, **fit_params):
        self._validate_steps()
        # Setup the memory
        memory = self.memory
        if memory is None:
            memory = Memory(cachedir=None, verbose=0)
        elif isinstance(memory, six.string_types):
            memory = Memory(cachedir=memory, verbose=0)
        elif not isinstance(memory, Memory):
            raise ValueError("'memory' should either be a string or"
                             " a joblib.Memory instance, got"
                             " 'memory={!r}' instead.".format(memory))

        fit_transform_one_cached = memory.cache(_fit_transform_one)
        fit_sample_one_cached = memory.cache(_fit_sample_one)

        fit_params_steps = dict((name, {}) for name, step in self.steps
                                if step is not None)
        for pname, pval in six.iteritems(fit_params):
            step, param = pname.split('__', 1)
            fit_params_steps[step][param] = pval
        Xt = X
        yt = y
        for step_idx, (name, transformer) in enumerate(self.steps[:-1]):
            if transformer is None:
                pass
            else:
                if memory.cachedir is None:
                    # we do not clone when caching is disabled to preserve
                    # backward compatibility
                    cloned_transformer = transformer
                else:
                    cloned_transformer = clone(transformer)
                # Fit or load from cache the current transfomer
                if (hasattr(cloned_transformer, "transform") or
                        hasattr(cloned_transformer, "fit_transform")):
                    Xt, fitted_transformer = fit_transform_one_cached(
                        cloned_transformer, None, Xt, yt,
                        **fit_params_steps[name])
                elif hasattr(cloned_transformer, "sample"):
                    Xt, yt, fitted_transformer = fit_sample_one_cached(
                        cloned_transformer, Xt, yt,
                        **fit_params_steps[name])
                # Replace the transformer of the step with the fitted
                # transformer. This is necessary when loading the transformer
                # from the cache.
                self.steps[step_idx] = (name, fitted_transformer)
        if self._final_estimator is None:
            return Xt, yt, {}
        return Xt, yt, fit_params_steps[self.steps[-1][0]]
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:52,代码来源:pipeline.py

示例6: _niigz2nii

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
    def _niigz2nii(self):
        """
        Convert .nii.gz to .nii (crucial for SPM).

        """
        cache_dir = os.path.join(self.scratch, 'cache_dir')
        mem = Memory(cache_dir, verbose=100)
        self._sanitize_session_output_dirs()
        if not None in [self.func, self.n_sessions, self.session_output_dirs]:
            self.func = [mem.cache(do_niigz2nii)(
                self.func[sess], output_dir=self.session_output_dirs[sess])
                         for sess in range(self.n_sessions)]
        if not self.anat is None:
            self.anat = mem.cache(do_niigz2nii)(
                self.anat, output_dir=self.anat_output_dir)
开发者ID:banilo,项目名称:pypreprocess,代码行数:17,代码来源:subject_data.py

示例7: _do_subject_slice_timing

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
def _do_subject_slice_timing(subject_data, ref_slice=0,
                             slice_order="ascending", interleaved=False,
                             caching=True, write_output_images=2,
                             func_prefix=None, func_basenames=None,
                             ext=None):
    if func_prefix is None:
        func_prefix = PREPROC_OUTPUT_IMAGE_PREFICES['STC']
    if func_basenames is None:
        func_basenames = [get_basenames(func)
                          for func in subject_data.func]

    # prepare for smart caching
    if caching:
        mem = Memory(cachedir=os.path.join(
            subject_data.output_dir, 'cache_dir'), verbose=100)
    runner = lambda handle: mem.cache(handle) if caching else handle
    stc_output = []
    original_bold = subject_data.func
    for sess_func, sess_id in zip(subject_data.func,
                                  range(subject_data.n_sessions)):
        fmristc = runner(fMRISTC(slice_order=slice_order, ref_slice=ref_slice,
                                 interleaved=interleaved, verbose=True).fit)(
                                raw_data=sess_func)
        stc_output.append(runner(fmristc.transform)(
                sess_func,
                output_dir=subject_data.tmp_output_dir if (
                    write_output_images > 0) else None,
                basenames=func_basenames[sess_id],
                prefix=func_prefix, ext=ext))
    subject_data.func = stc_output
    del original_bold, fmristc
    if write_output_images > 1:
        subject_data.hardlink_output_files()
    return subject_data
开发者ID:chrplr,项目名称:pypreprocess,代码行数:36,代码来源:purepython_preproc_utils.py

示例8: test_multilabel

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
    def test_multilabel(self):
        cache = Memory(cachedir=tempfile.gettempdir())
        cached_func = cache.cache(
            sklearn.datasets.make_multilabel_classification
        )
        X, Y = cached_func(
            n_samples=150,
            n_features=20,
            n_classes=5,
            n_labels=2,
            length=50,
            allow_unlabeled=True,
            sparse=False,
            return_indicator=True,
            return_distributions=False,
            random_state=1
        )
        X_train = X[:100, :]
        Y_train = Y[:100, :]
        X_test = X[101:, :]
        Y_test = Y[101:, ]

        data = {'X_train': X_train, 'Y_train': Y_train,
                'X_test': X_test, 'Y_test': Y_test}

        dataset_properties = {'multilabel': True}
        cs = SimpleClassificationPipeline(dataset_properties=dataset_properties).\
            get_hyperparameter_search_space()
        self._test_configurations(configurations_space=cs, data=data)
开发者ID:Bryan-LL,项目名称:auto-sklearn,代码行数:31,代码来源:test_classification.py

示例9: fit

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
    def fit(self, niimgs, y=None):
        """Compute the mask corresponding to the data

        Parameters
        ----------
        niimgs: list of filenames or NiImages
            Data on which the mask must be calculated. If this is a list,
            the affine is considered the same for all.
        """

        memory = self.memory
        if isinstance(memory, basestring):
            memory = Memory(cachedir=memory)

        # Load data (if filenames are given, load them)
        if self.verbose > 0:
            print "[%s.fit] Loading data" % self.__class__.__name__
        niimgs = utils.check_niimgs(niimgs, accept_3d=True)

        # Compute the mask if not given by the user
        if self.mask is None:
            if self.verbose > 0:
                print "[%s.fit] Computing the mask" % self.__class__.__name__
            mask = memory.cache(masking.compute_epi_mask)(
                niimgs.get_data(),
                connected=self.mask_connected,
                opening=self.mask_opening,
                lower_cutoff=self.mask_lower_cutoff,
                upper_cutoff=self.mask_upper_cutoff,
                verbose=(self.verbose - 1),
            )
            self.mask_ = Nifti1Image(mask.astype(np.int), niimgs.get_affine())
        else:
            self.mask_ = utils.check_niimg(self.mask)

            # If resampling is requested, resample also the mask
            # Resampling: allows the user to change the affine, the shape or both
        if self.verbose > 0:
            print "[%s.transform] Resampling mask" % self.__class__.__name__
        self.mask_ = memory.cache(resampling.resample_img)(
            self.mask_,
            target_affine=self.target_affine,
            target_shape=self.target_shape,
            copy=(self.target_affine is not None and self.target_shape is not None),
        )

        return self
开发者ID:ruizm,项目名称:tutorial,代码行数:49,代码来源:nifti_masker.py

示例10: fetch_asirra

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
def fetch_asirra(image_count=1000):
    partial_path = check_fetch_asirra()
    m = Memory(cachedir=partial_path, compress=6, verbose=0)
    load_func = m.cache(_fetch_asirra)
    images, target = load_func(partial_path, image_count=image_count)
    return Bunch(data=images.reshape(len(images), -1),
                 images=images, target=target,
                 DESCR="Asirra cats and dogs dataset")
开发者ID:invinciblejha,项目名称:sklearn-theano,代码行数:10,代码来源:asirra.py

示例11: get_all_metadata

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
def get_all_metadata(config=None, args=None):
  if config == None and args == None:
    raise Exception('Either config or args need to be not None')
  if config == None:
    config = get_config(args)
    
  class_meta  = read_class_meta(config.dataset.class_meta_file)
  attrib_meta_with_name = read_attribute_meta(config.dataset.attrib_meta_file)
  attrib_meta = attrib_meta_with_name.drop('class_name',axis=1)
  train_annos = read_image_annotations(config.dataset.train_annos_file)
  test_annos = read_image_annotations(config.dataset.test_annos_file,
                                      has_class_id=False)
  domain_meta = read_domain_meta(config.dataset.domain_meta_file)
  train_annos['class_name'] = np.array([class_meta.class_name[class_index] for 
                                         class_index in 
                                         train_annos.class_index])
#   test_annos['class_name'] = np.array([class_meta.class_name[class_index] for 
#                                          class_index in 
#                                          test_annos.class_index])

  # Prepand path to the dataset to each img_path
  train_annos.img_path = train_annos.img_path.apply(lambda x: config.dataset.main_path.joinpath(x).abspath())
  test_annos.img_path = test_annos.img_path.apply(lambda x: config.dataset.main_path.joinpath(x).abspath())

  # Filter the class meta and train/test annotations to just use the 
  # domains defined in config
  class_meta = class_meta[class_meta.domain_index.isin(config.dataset.domains)]
  train_annos = train_annos[train_annos.domain_index.isin(config.dataset.domains)]
  test_annos = test_annos[test_annos.domain_index.isin(config.dataset.domains)]
  
  
  # Create dev set
  dev_annos_train, dev_annos_test = create_dev_set(train_annos, 
                                                   config)

  # Should we use the dev set as the test set
  if config.dataset.dev_set.use:
    train_used, test_used = dev_annos_train, dev_annos_test 
  else:
    train_used, test_used = train_annos, test_annos
    
    
  if config.flip_images:
    memory = Memory(cachedir=config.cache_dir, verbose=config.logging.verbose)
    flip_func = memory.cache(create_flipped_images)
    train_used = flip_func(train_used, config)

  return ({'real_train_annos': train_annos,
           'real_test_annos': test_annos,
           'train_annos': train_used,
           'test_annos': test_used,
           'validation_annos': dev_annos_test, 
            'class_meta': class_meta,
            'domain_meta': domain_meta,
            'attrib_meta': attrib_meta,
            'attrib_meta_with_name': attrib_meta_with_name},
          config)
开发者ID:yairmov,项目名称:carUnderstanding,代码行数:59,代码来源:fgcomp_dataset_utils.py

示例12: cache

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
def cache(func, memory, ref_memory_level=2, memory_level=1, **kwargs):
    """ Return a joblib.Memory object.

    The memory_level determines the level above which the wrapped
    function output is cached. By specifying a numeric value for
    this level, the user can to control the amount of cache memory
    used. This function will cache the function call or not
    depending on the cache level.

    Parameters
    ----------
    func: function
        The function which output is to be cached.

    memory: instance of joblib.Memory or string
        Used to cache the function call.

    ref_memory_level: int
        The reference memory_level used to determine if function call must
        be cached or not (if memory_level is larger than ref_memory_level
        the function is cached)

    memory_level: int
        The memory_level from which caching must be enabled for the wrapped
        function.

    kwargs: keyword arguments
        The keyword arguments passed to memory.cache

    Returns
    -------
    mem: joblib.MemorizedFunc
        object that wraps the function func. This object may be
        a no-op, if the requested level is lower than the value given
        to _cache()). For consistency, a joblib.Memory object is always
        returned.
    """

    if ref_memory_level <= memory_level or memory is None:
        memory = Memory(cachedir=None)
    else:
        memory = memory
        if isinstance(memory, basestring):
            memory = Memory(cachedir=memory)
        if not isinstance(memory, memory_classes):
            raise TypeError("'memory' argument must be a string or a "
                            "joblib.Memory object. "
                            "%s %s was given." % (memory, type(memory)))
        if memory.cachedir is None:
            warnings.warn("Caching has been enabled (memory_level = %d) "
                          "but no Memory object or path has been provided"
                          " (parameter memory). Caching deactivated for "
                          "function %s." %
                          (ref_memory_level, func.func_name),
                          stacklevel=2)
    return memory.cache(func, **kwargs)
开发者ID:invinciblejha,项目名称:nilearn,代码行数:58,代码来源:cache_mixin.py

示例13: _do_subject_coregister

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
def _do_subject_coregister(
        subject_data, coreg_func_to_anat=True, caching=True,
        ext=None, write_output_images=2, func_basenames=None, func_prefix="",
        anat_basename=None, anat_prefix="", report=True, verbose=True):
    ref_brain = 'func'
    src_brain = 'anat'
    ref = subject_data.func[0]
    src = subject_data.anat
    if coreg_func_to_anat:
        ref_brain, src_brain = src_brain, ref_brain
        ref, src = src, ref

    # prepare for smart caching
    if caching:
        mem = Memory(cachedir=os.path.join(
                subject_data.output_dir, 'cache_dir'), verbose=100)
    runner = lambda handle: mem.cache(handle) if caching else handle

    # estimate realignment (affine) params for coreg
    coreg = runner(Coregister(verbose=verbose).fit)(ref, src)

    # apply coreg
    if coreg_func_to_anat:
        if func_basenames is None:
            func_basenames = [get_basenames(func)
                              for func in subject_data.func]
        coreg_func = []
        for sess_func, sess_id in zip(subject_data.func, range(
                subject_data.n_sessions)):
            coreg_func.append(runner(coreg.transform)(
                sess_func, output_dir=subject_data.tmp_output_dir if (
                    write_output_images == 2) else None,
                basenames=func_basenames[sess_id] if coreg_func_to_anat
                else anat_basename, prefix=func_prefix))
        subject_data.func = coreg_func
        src = load_vols(subject_data.func[0])[0]
    else:
        if anat_basename is None:
            anat_basename = get_basenames(subject_data.anat)
        subject_data.anat = runner(coreg.transform)(
            subject_data.anat, basename=anat_basename,
            output_dir=subject_data.tmp_output_dir if (
                write_output_images == 2) else None, prefix=anat_prefix,
            ext=ext)
        src = subject_data.anat

    # generate coregistration QA thumbs
    if report:
        subject_data.generate_coregistration_thumbnails(
            coreg_func_to_anat=coreg_func_to_anat, nipype=False)

    del coreg
    if write_output_images > 1:
        subject_data.hardlink_output_files()
    return subject_data
开发者ID:chrplr,项目名称:pypreprocess,代码行数:57,代码来源:purepython_preproc_utils.py

示例14: get_multilabel

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
 def get_multilabel(self):
     cache = Memory(cachedir=tempfile.gettempdir())
     cached_func = cache.cache(make_multilabel_classification)
     return cached_func(
         n_samples=100,
         n_features=10,
         n_classes=5,
         n_labels=5,
         return_indicator=True,
         random_state=1
     )
开发者ID:Bryan-LL,项目名称:auto-sklearn,代码行数:13,代码来源:test_meta_features.py

示例15: _do_subject_smooth

# 需要导入模块: from sklearn.externals.joblib import Memory [as 别名]
# 或者: from sklearn.externals.joblib.Memory import cache [as 别名]
def _do_subject_smooth(subject_data, fwhm, prefix=None,
                       write_output_images=2, func_basenames=None,
                       concat=False, caching=True):
    if prefix is None:
        prefix = PREPROC_OUTPUT_IMAGE_PREFICES['smoothing']
    if func_basenames is None:
        func_basenames = [get_basenames(func) for func in subject_data.func]
    if caching:
        mem = Memory(cachedir=os.path.join(
                subject_data.output_dir, 'cache_dir'), verbose=100)
    sfunc = []
    for sess in range(subject_data.n_sessions):
        sess_func = subject_data.func[sess]
        _tmp = mem.cache(smooth_image)(sess_func,
                                   fwhm)
        if write_output_images == 2:
            _tmp = mem.cache(save_vols)(
                _tmp, subject_data.output_dir, basenames=func_basenames[sess],
                prefix=prefix, concat=concat)
        sfunc.append(_tmp)
    subject_data.func = sfunc
    return subject_data
开发者ID:chrplr,项目名称:pypreprocess,代码行数:24,代码来源:purepython_preproc_utils.py


注:本文中的sklearn.externals.joblib.Memory.cache方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。