当前位置: 首页>>代码示例>>Python>>正文


Python BaggingClassifier.set_params方法代码示例

本文整理汇总了Python中sklearn.ensemble.BaggingClassifier.set_params方法的典型用法代码示例。如果您正苦于以下问题:Python BaggingClassifier.set_params方法的具体用法?Python BaggingClassifier.set_params怎么用?Python BaggingClassifier.set_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.BaggingClassifier的用法示例。


在下文中一共展示了BaggingClassifier.set_params方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_warm_start_smaller_n_estimators

# 需要导入模块: from sklearn.ensemble import BaggingClassifier [as 别名]
# 或者: from sklearn.ensemble.BaggingClassifier import set_params [as 别名]
def test_warm_start_smaller_n_estimators():
    # Test if warm start'ed second fit with smaller n_estimators raises error.
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    clf = BaggingClassifier(n_estimators=5, warm_start=True)
    clf.fit(X, y)
    clf.set_params(n_estimators=4)
    assert_raises(ValueError, clf.fit, X, y)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:9,代码来源:test_bagging.py

示例2: test_oob_score_removed_on_warm_start

# 需要导入模块: from sklearn.ensemble import BaggingClassifier [as 别名]
# 或者: from sklearn.ensemble.BaggingClassifier import set_params [as 别名]
def test_oob_score_removed_on_warm_start():
    X, y = make_hastie_10_2(n_samples=2000, random_state=1)

    clf = BaggingClassifier(n_estimators=50, oob_score=True)
    clf.fit(X, y)

    clf.set_params(warm_start=True, oob_score=False, n_estimators=100)
    clf.fit(X, y)

    assert_raises(AttributeError, getattr, clf, "oob_score_")
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:12,代码来源:test_bagging.py

示例3: test_parallel_classification

# 需要导入模块: from sklearn.ensemble import BaggingClassifier [as 别名]
# 或者: from sklearn.ensemble.BaggingClassifier import set_params [as 别名]
def test_parallel_classification():
    # Check parallel classification.
    rng = check_random_state(0)

    # Classification
    X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng)

    ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=3, random_state=0).fit(X_train, y_train)

    # predict_proba
    ensemble.set_params(n_jobs=1)
    y1 = ensemble.predict_proba(X_test)
    ensemble.set_params(n_jobs=2)
    y2 = ensemble.predict_proba(X_test)
    assert_array_almost_equal(y1, y2)

    ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=1, random_state=0).fit(X_train, y_train)

    y3 = ensemble.predict_proba(X_test)
    assert_array_almost_equal(y1, y3)

    # decision_function
    ensemble = BaggingClassifier(SVC(decision_function_shape="ovr"), n_jobs=3, random_state=0).fit(X_train, y_train)

    ensemble.set_params(n_jobs=1)
    decisions1 = ensemble.decision_function(X_test)
    ensemble.set_params(n_jobs=2)
    decisions2 = ensemble.decision_function(X_test)
    assert_array_almost_equal(decisions1, decisions2)

    ensemble = BaggingClassifier(SVC(decision_function_shape="ovr"), n_jobs=1, random_state=0).fit(X_train, y_train)

    decisions3 = ensemble.decision_function(X_test)
    assert_array_almost_equal(decisions1, decisions3)
开发者ID:agamemnonc,项目名称:scikit-learn,代码行数:36,代码来源:test_bagging.py

示例4: test_warm_start_equivalence

# 需要导入模块: from sklearn.ensemble import BaggingClassifier [as 别名]
# 或者: from sklearn.ensemble.BaggingClassifier import set_params [as 别名]
def test_warm_start_equivalence():
    # warm started classifier with 5+5 estimators should be equivalent to
    # one classifier with 10 estimators
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43)

    clf_ws = BaggingClassifier(n_estimators=5, warm_start=True, random_state=3141)
    clf_ws.fit(X_train, y_train)
    clf_ws.set_params(n_estimators=10)
    clf_ws.fit(X_train, y_train)
    y1 = clf_ws.predict(X_test)

    clf = BaggingClassifier(n_estimators=10, warm_start=False, random_state=3141)
    clf.fit(X_train, y_train)
    y2 = clf.predict(X_test)

    assert_array_almost_equal(y1, y2)
开发者ID:agamemnonc,项目名称:scikit-learn,代码行数:19,代码来源:test_bagging.py

示例5: test_warm_start

# 需要导入模块: from sklearn.ensemble import BaggingClassifier [as 别名]
# 或者: from sklearn.ensemble.BaggingClassifier import set_params [as 别名]
def test_warm_start(random_state=42):
    # Test if fitting incrementally with warm start gives a forest of the
    # right size and the same results as a normal fit.
    X, y = make_hastie_10_2(n_samples=20, random_state=1)

    clf_ws = None
    for n_estimators in [5, 10]:
        if clf_ws is None:
            clf_ws = BaggingClassifier(n_estimators=n_estimators, random_state=random_state, warm_start=True)
        else:
            clf_ws.set_params(n_estimators=n_estimators)
        clf_ws.fit(X, y)
        assert_equal(len(clf_ws), n_estimators)

    clf_no_ws = BaggingClassifier(n_estimators=10, random_state=random_state, warm_start=False)
    clf_no_ws.fit(X, y)

    assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws]))
开发者ID:agamemnonc,项目名称:scikit-learn,代码行数:20,代码来源:test_bagging.py

示例6: test_parallel_classification

# 需要导入模块: from sklearn.ensemble import BaggingClassifier [as 别名]
# 或者: from sklearn.ensemble.BaggingClassifier import set_params [as 别名]
def test_parallel_classification():
    # Check parallel classification.
    rng = check_random_state(0)

    # Classification
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)

    ensemble = BaggingClassifier(DecisionTreeClassifier(),
                                 n_jobs=3,
                                 random_state=0).fit(X_train, y_train)

    # predict_proba
    ensemble.set_params(n_jobs=1)
    y1 = ensemble.predict_proba(X_test)
    ensemble.set_params(n_jobs=2)
    y2 = ensemble.predict_proba(X_test)
    assert_array_almost_equal(y1, y2)

    ensemble = BaggingClassifier(DecisionTreeClassifier(),
                                 n_jobs=1,
                                 random_state=0).fit(X_train, y_train)

    y3 = ensemble.predict_proba(X_test)
    assert_array_almost_equal(y1, y3)

    # decision_function
    ensemble = BaggingClassifier(SVC(gamma='scale',
                                     decision_function_shape='ovr'),
                                 n_jobs=3,
                                 random_state=0).fit(X_train, y_train)

    ensemble.set_params(n_jobs=1)
    decisions1 = ensemble.decision_function(X_test)
    ensemble.set_params(n_jobs=2)
    decisions2 = ensemble.decision_function(X_test)
    assert_array_almost_equal(decisions1, decisions2)

    X_err = np.hstack((X_test, np.zeros((X_test.shape[0], 1))))
    assert_raise_message(ValueError, "Number of features of the model "
                         "must match the input. Model n_features is {0} "
                         "and input n_features is {1} "
                         "".format(X_test.shape[1], X_err.shape[1]),
                         ensemble.decision_function, X_err)

    ensemble = BaggingClassifier(SVC(gamma='scale',
                                     decision_function_shape='ovr'),
                                 n_jobs=1,
                                 random_state=0).fit(X_train, y_train)

    decisions3 = ensemble.decision_function(X_test)
    assert_array_almost_equal(decisions1, decisions3)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:55,代码来源:test_bagging.py

示例7: test_parallel

# 需要导入模块: from sklearn.ensemble import BaggingClassifier [as 别名]
# 或者: from sklearn.ensemble.BaggingClassifier import set_params [as 别名]
def test_parallel():
    """Check parallel computations."""
    rng = check_random_state(0)

    # Classification
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)

    for n_jobs in [-1, 3]:
        ensemble = BaggingClassifier(DecisionTreeClassifier(),
                                     n_jobs=n_jobs,
                                     random_state=0).fit(X_train, y_train)

        # predict_proba
        ensemble.set_params(n_jobs=1)
        y1 = ensemble.predict_proba(X_test)
        ensemble.set_params(n_jobs=2)
        y2 = ensemble.predict_proba(X_test)
        assert_array_almost_equal(y1, y2)

        ensemble = BaggingClassifier(DecisionTreeClassifier(),
                                     n_jobs=1,
                                     random_state=0).fit(X_train, y_train)

        y3 = ensemble.predict_proba(X_test)
        assert_array_almost_equal(y1, y3)

        # decision_function
        ensemble = BaggingClassifier(SVC(),
                                     n_jobs=n_jobs,
                                     random_state=0).fit(X_train, y_train)

        ensemble.set_params(n_jobs=1)
        decisions1 = ensemble.decision_function(X_test)
        ensemble.set_params(n_jobs=2)
        decisions2 = ensemble.decision_function(X_test)
        assert_array_almost_equal(decisions1, decisions2)

        ensemble = BaggingClassifier(SVC(),
                                     n_jobs=1,
                                     random_state=0).fit(X_train, y_train)

        decisions3 = ensemble.decision_function(X_test)
        assert_array_almost_equal(decisions1, decisions3)

    # Regression
    X_train, X_test, y_train, y_test = train_test_split(boston.data,
                                                        boston.target,
                                                        random_state=rng)

    for n_jobs in [-1, 3]:
        ensemble = BaggingRegressor(DecisionTreeRegressor(),
                                    n_jobs=3,
                                    random_state=0).fit(X_train, y_train)

        ensemble.set_params(n_jobs=1)
        y1 = ensemble.predict(X_test)
        ensemble.set_params(n_jobs=2)
        y2 = ensemble.predict(X_test)
        assert_array_almost_equal(y1, y2)

        ensemble = BaggingRegressor(DecisionTreeRegressor(),
                                    n_jobs=1,
                                    random_state=0).fit(X_train, y_train)

        y3 = ensemble.predict(X_test)
        assert_array_almost_equal(y1, y3)
开发者ID:2011200799,项目名称:scikit-learn,代码行数:70,代码来源:test_bagging.py


注:本文中的sklearn.ensemble.BaggingClassifier.set_params方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。