本文整理汇总了Python中sklearn.decomposition.pca.PCA类的典型用法代码示例。如果您正苦于以下问题:Python PCA类的具体用法?Python PCA怎么用?Python PCA使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PCA类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
print('Reading in data file...')
data = pd.read_csv(path + 'Sentiment Analysis Dataset.csv',
usecols=['Sentiment', 'SentimentText'], error_bad_lines=False)
print('Pre-processing tweet text...')
corpus = data['SentimentText']
vectorizer = TfidfVectorizer(decode_error='replace', strip_accents='unicode',
stop_words='english', tokenizer=tokenize)
X = vectorizer.fit_transform(corpus.values)
y = data['Sentiment'].values
print('Training sentiment classification model...')
classifier = MultinomialNB()
classifier.fit(X, y)
print('Training word2vec model...')
corpus = corpus.map(lambda x: tokenize(x))
word2vec = Word2Vec(corpus.tolist(), size=100, window=4, min_count=10, workers=4)
word2vec.init_sims(replace=True)
print('Fitting PCA transform...')
word_vectors = [word2vec[word] for word in word2vec.vocab]
pca = PCA(n_components=2)
pca.fit(word_vectors)
print('Saving artifacts to disk...')
joblib.dump(vectorizer, path + 'vectorizer.pkl')
joblib.dump(classifier, path + 'classifier.pkl')
joblib.dump(pca, path + 'pca.pkl')
word2vec.save(path + 'word2vec.pkl')
print('Process complete.')
示例2: LogisticClassifier
class LogisticClassifier(object):
def __init__(self, learning_rate=0.01, reg=0., momentum=0.5):
self.classifier = LogisticRegression(learning_rate, reg, momentum)
self.pca = None
self.scaler = None
def sgd_optimize(self, data, n_epochs, mini_batch_size):
data = self._preprocess_data(data)
sgd_optimization(data, self.classifier, n_epochs, mini_batch_size)
def _preprocess_data(self, data):
# center data and scale to unit std
if self.scaler is None:
self.scaler = StandardScaler()
data = self.scaler.fit_transform(data)
else:
data = self.scaler.transform(data)
if self.pca is None:
# use minika's mle to guess appropriate dimension
self.pca = PCA(n_components='mle')
data = self.pca.fit_transform(data)
else:
data = self.pca.transform(data)
return data
示例3: pca_plot
def pca_plot(fp_list, clusters):
np_fps = []
for fp in fp_list:
arr = numpy.zeros((1,))
DataStructs.ConvertToNumpyArray(fp, arr)
np_fps.append(arr)
pca = PCA(n_components=3)
pca.fit(np_fps)
np_fps_r = pca.transform(np_fps)
p1 = figure(x_axis_label="PC1",
y_axis_label="PC2",
title="PCA clustering of PAINS")
p2 = figure(x_axis_label="PC2",
y_axis_label="PC3",
title="PCA clustering of PAINS")
color_vector = ["blue", "red", "green", "orange", "pink", "cyan", "magenta",
"brown", "purple"]
print len(set(clusters))
for clust_num in set(clusters):
print clust_num
local_cluster = []
for i in xrange(len(clusters)):
if clusters[i] == clust_num:
local_cluster.append(np_fps_r[i])
print len(local_cluster)
p1.scatter(np_fps_r[:,0], np_fps_r[:,1],
color=color_vector[clust_num])
p2.scatter(np_fps_r[:,1], np_fps_r[:,2],
color=color_vector[clust_num])
return HBox(p1, p2)
示例4: calc_pca
def calc_pca(bnd, npc=None, preaverage=False, use_unbiased=False, \
method='mdp'):
'''
Parameters
----------
bnd : BinnedData
binned data
npc : int or None, optional
number of PCs to calculate, defaults to None
preaverage : bool
average across repeats?
Returns
-------
score : ndarray
(npc, nobs)
weight : ndarray
(npc, nvar)
'''
assert method in ['mdp', 'skl']
data = format_for_fa(bnd, preaverage=preaverage,
use_unbiased=use_unbiased)
if method == 'mdp':
pca_node = mdp.nodes.PCANode(output_dim=npc)
score = pca_node.execute(data)
weight = pca_node.get_projmatrix()
elif method == 'skl':
pca_obj = PCA(n_components=npc)
score = pca_obj.fit(data).transform(data)
weight = pca_obj.components_.T
return score.T, weight.T
示例5: pca
def pca(target, control, title, name_one, name_two):
np_fps = []
for fp in target + control:
arr = numpy.zeros((1,))
DataStructs.ConvertToNumpyArray(fp, arr)
np_fps.append(arr)
ys_fit = [1] * len(target) + [0] * len(control)
names = ["PAINS", "Control"]
pca = PCA(n_components=3)
pca.fit(np_fps)
np_fps_r = pca.transform(np_fps)
p1 = figure(x_axis_label="PC1",
y_axis_label="PC2",
title=title)
p1.scatter(np_fps_r[:len(target), 0], np_fps_r[:len(target), 1],
color="blue", legend=name_one)
p1.scatter(np_fps_r[len(target):, 0], np_fps_r[len(target):, 1],
color="red", legend=name_two)
p2 = figure(x_axis_label="PC2",
y_axis_label="PC3",
title=title)
p2.scatter(np_fps_r[:len(target), 1], np_fps_r[:len(target), 2],
color="blue", legend=name_one)
p2.scatter(np_fps_r[len(target):, 1], np_fps_r[len(target):, 2],
color="red", legend=name_two)
return HBox(p1, p2)
示例6: pca
def pca(tx, ty, rx, ry):
compressor = PCA(n_components = tx[1].size/2)
compressor.fit(tx, y=ty)
newtx = compressor.transform(tx)
newrx = compressor.transform(rx)
em(newtx, ty, newrx, ry, add="wPCAtr", times=10)
km(newtx, ty, newrx, ry, add="wPCAtr", times=10)
nn(newtx, ty, newrx, ry, add="wPCAr")
示例7: pca
def pca(tx, ty, rx, ry):
print "pca"
compressor = PCA(n_components = tx[1].size/2)
compressor.fit(tx, y=ty)
newtx = compressor.transform(tx)
newrx = compressor.transform(rx)
em(newtx, ty, newrx, ry, add="wPCAtr")
km(newtx, ty, newrx, ry, add="wPCAtr")
nn(newtx, ty, newrx, ry, add="wPCAtr")
print "pca done"
示例8: PCA
def PCA佮SVM模型(self, 問題, 答案):
sample_weight_constant = np.ones(len(問題))
clf = svm.SVC(C=1)
pca = PCA(n_components=100)
# clf = svm.NuSVC()
print('訓練PCA')
pca.fit(問題)
print('訓練SVM')
clf.fit(pca.transform(問題), 答案, sample_weight=sample_weight_constant)
print('訓練了')
return lambda 問:clf.predict(pca.transform(問))
示例9: train_pca
def train_pca(pains_fps, num_components=3):
'''
Dimensional reduction of fps bit vectors to principal components
:param pains_fps:
:return: pca reduced fingerprints bit vectors
'''
np_fps = []
for fp in pains_fps:
arr = numpy.zeros((1,))
DataStructs.ConvertToNumpyArray(fp, arr)
np_fps.append(arr)
pca = PCA(n_components=num_components)
pca.fit(np_fps)
fps_reduced = pca.transform(np_fps)
return fps_reduced
示例10: classify_for_benchmark
def classify_for_benchmark(data_set_df, user_info_df, features, label='gender', classifier=None, num=None):
instance_num = len(data_set_df.columns)
x = data_set_df.loc[features]
x = x.dropna(how='all', axis=0)
x = x.dropna(how='all', axis=1)
imp = Imputer(missing_values='NaN', strategy='most_frequent', axis=1)
x_replaced = x.replace([np.inf, -np.inf], np.nan)
x_imp = imp.transform(x_replaced)
y = user_info_df.get(label)
y_filtered = y[(map(int, x.columns.values))]
clf = nb.BernoulliNB() if classifier is None else classifier
cv_num = min(len(y_filtered), 10)
if cv_num <= 1 or len(y_filtered.unique()) <= 1:
return 0.0, 100.0
else:
final_score = 0.0
for i in range(100):
score = 0.0
cnt = 0
skf = StratifiedKFold(y_filtered, n_folds=cv_num, shuffle=True)
for tr_index, te_index in skf:
x_train, x_test = x_imp.T[tr_index], x_imp.T[te_index]
y_train, y_test = y_filtered.iloc[tr_index], y_filtered.iloc[te_index]
min_num = min(len(x_train), len(x_train.T), len(x_test), len(x_test.T), num)
pca = PCA(min_num)
x_train = pca.fit_transform(x_train)
x_test = pca.fit_transform(x_test)
try:
clf.fit(x_train, y_train)
score += clf.score(x_test, y_test)
cnt += 1
# cv_score = cross_validation.cross_val_score(clf, x_imp.T, y_filtered, cv=cv_num)
except ValueError:
traceback.print_exc()
print i, "why error? skip!"
if cnt > 0:
score /= cnt
print i, score
else:
return 0.0, (float(instance_num - len(y_filtered)) / instance_num)
final_score += score
final_score /= 100
miss_clf_rate = (float(instance_num - len(y_filtered)) / instance_num)
return final_score, miss_clf_rate
示例11: reduction
def reduction(data, params):
# parse parameters
for item in params:
if isinstance(params[item], str):
exec(item+'='+'"'+params[item]+'"')
else:
exec(item+'='+str(params[item]))
# apply PCA
pca = PCA(n_components=n_components)
pca.fit(data)
X = pca.transform(data)
return X
示例12: pca_no_labels
def pca_no_labels(target, title="PCA clustering of PAINS", color="blue"):
np_fps = []
for fp in target:
arr = numpy.zeros((1,))
DataStructs.ConvertToNumpyArray(fp, arr)
np_fps.append(arr)
pca = PCA(n_components=3)
pca.fit(np_fps)
np_fps_r = pca.transform(np_fps)
p3 = figure(x_axis_label="PC1",
y_axis_label="PC2",
title=title)
p3.scatter(np_fps_r[:, 0], np_fps_r[:, 1], color=color)
p4 = figure(x_axis_label="PC2",
y_axis_label="PC3",
title=title)
p4.scatter(np_fps_r[:, 1], np_fps_r[:, 2], color=color)
return HBox(p3, p4)
示例13: airline_pca
def airline_pca():
X = np.array(pca_data)
pca = PCA(n_components=3)
pca.fit(X)
Y=pca.transform(normalize(X))
fig = plt.figure(1, figsize=(8, 6))
ax = Axes3D(fig, elev=-150, azim=110)
colordict = {carrier:i for i,carrier in enumerate(major_carriers)}
pointcolors = [colordict[carrier] for carrier in target_carrier]
ax.scatter(Y[:, 0], Y[:, 1], Y[:, 2], c=pointcolors)
ax.set_title("First three PCA directions")
ax.set_xlabel("1st eigenvector")
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel("2nd eigenvector")
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel("3rd eigenvector")
ax.w_zaxis.set_ticklabels([])
示例14: test_pipeline_transform
def test_pipeline_transform():
# Test whether pipeline works with a transformer at the end.
# Also test pipline.transform and pipeline.inverse_transform
iris = load_iris()
X = iris.data
pca = PCA(n_components=2)
pipeline = Pipeline([('pca', pca)])
# test transform and fit_transform:
X_trans = pipeline.fit(X).transform(X)
X_trans2 = pipeline.fit_transform(X)
X_trans3 = pca.fit_transform(X)
assert_array_almost_equal(X_trans, X_trans2)
assert_array_almost_equal(X_trans, X_trans3)
X_back = pipeline.inverse_transform(X_trans)
X_back2 = pca.inverse_transform(X_trans)
assert_array_almost_equal(X_back, X_back2)
示例15: do_train_with_freq
def do_train_with_freq():
tf_mix = TrainFiles(train_path = train_path_mix, labels_file = labels_file, test_size = 0.)
tf_freq = TrainFiles(train_path = train_path_freq, labels_file = labels_file, test_size = 0.)
X_m, Y_m, _, _ = tf_mix.prepare_inputs()
X_f, Y_f, _, _ = tf_freq.prepare_inputs()
X = np.c_[X_m, X_f]
Y = Y_f
X, Xt, Y, Yt = train_test_split(X, Y, test_size = 0.1)
sl = SKSupervisedLearning(SVC, X, Y, Xt, Yt)
sl.fit_standard_scaler()
pca = PCA(250)
pca.fit(np.r_[sl.X_train_scaled, sl.X_test_scaled])
X_pca = pca.transform(sl.X_train_scaled)
X_pca_test = pca.transform(sl.X_test_scaled)
#sl.train_params = {'C': 100, 'gamma': 0.0001, 'probability' : True}
#print "Start SVM: ", time_now_str()
#sl_ll_trn, sl_ll_tst = sl.fit_and_validate()
#print "Finish Svm: ", time_now_str()
##construct a dataset for RBM
#X_rbm = X[:, 257:]
#Xt_rbm = X[:, 257:]
#rng = np.random.RandomState(123)
#rbm = RBM(X_rbm, n_visible=X_rbm.shape[1], n_hidden=X_rbm.shape[1]/4, numpy_rng=rng)
#pretrain_lr = 0.1
#k = 2
#pretraining_epochs = 200
#for epoch in xrange(pretraining_epochs):
# rbm.contrastive_divergence(lr=pretrain_lr, k=k)
# cost = rbm.get_reconstruction_cross_entropy()
# print >> sys.stderr, 'Training epoch %d, cost is ' % epoch, cost
trndata, tstdata = createDataSets(X_pca, Y, X_pca_test, Yt)
fnn = train(trndata, tstdata, epochs = 1000, test_error = 0.025, momentum = 0.2, weight_decay = 0.0001)