当前位置: 首页>>代码示例>>Python>>正文


Python SparsePCA.fit方法代码示例

本文整理汇总了Python中sklearn.decomposition.SparsePCA.fit方法的典型用法代码示例。如果您正苦于以下问题:Python SparsePCA.fit方法的具体用法?Python SparsePCA.fit怎么用?Python SparsePCA.fit使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.decomposition.SparsePCA的用法示例。


在下文中一共展示了SparsePCA.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_fit_transform

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def test_fit_transform():
    alpha = 1
    rng = np.random.RandomState(0)
    Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)  # wide array
    spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
                          random_state=0)
    spca_lars.fit(Y)
    U1 = spca_lars.transform(Y)
    # Test multiple CPUs
    if sys.platform == 'win32':  # fake parallelism for win32
        import sklearn.externals.joblib.parallel as joblib_par
        _mp = joblib_par.multiprocessing
        joblib_par.multiprocessing = None
        try:
            spca = SparsePCA(n_components=3, n_jobs=2, random_state=0,
                             alpha=alpha).fit(Y)
            U2 = spca.transform(Y)
        finally:
            joblib_par.multiprocessing = _mp
    else:  # we can efficiently use parallelism
        spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha,
                         random_state=0).fit(Y)
        U2 = spca.transform(Y)
    assert_true(not np.all(spca_lars.components_ == 0))
    assert_array_almost_equal(U1, U2)
    # Test that CD gives similar results
    spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0,
                           alpha=alpha)
    spca_lasso.fit(Y)
    assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
开发者ID:boersmamarcel,项目名称:scikit-learn,代码行数:32,代码来源:test_sparse_pca.py

示例2: test_initialization

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def test_initialization():
    rng = np.random.RandomState(0)
    U_init = rng.randn(5, 3)
    V_init = rng.randn(3, 4)
    model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng)
    model.fit(rng.randn(5, 4))
    assert_array_equal(model.components_, V_init)
开发者ID:kkuunnddaann,项目名称:scikit-learn,代码行数:9,代码来源:test_sparse_pca.py

示例3: sccodedirect

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def sccodedirect():
    "得到不带眼镜的RPCA结果"
    nglassmodel = np.load('nglassline.npy').astype('f')
    from sklearn.decomposition import SparsePCA
    learning = SparsePCA(500,verbose=True)
    learning.fit(nglassmodel)
    import cPickle
    cPickle.dump(learning,file('sparsepcadirect','wb'),-1)
开发者ID:wzc11,项目名称:glasses-removal,代码行数:10,代码来源:model1-2.py

示例4: sparse_pca

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
 def sparse_pca(self):
     """
     Runs PCA on view and returns projected view, the principle components,
     and explained variance.
     """
     model = SparsePCA(n_components=param['components'], alpha=param['sparse_pca_alpha'])
     model.fit(self.view)
     return model.transform(self.view), model.components_
开发者ID:bshapiro,项目名称:disease-time-series,代码行数:10,代码来源:representation.py

示例5: do_sparse_pca

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def do_sparse_pca(sparse_matrix):
    # from skikit learn http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparsePCA.html#sklearn.decomposition.SparsePCA

    dense_matrix = sparse_matrix.tobsr().toarray()
    # instantiate the spca with some parameters
    spca = SparsePCA(n_components=6, alpha=0.01, ridge_alpha=0.01, max_iter=1000, tol=1e-08, method='lars', n_jobs=1, U_init=None, V_init=None, verbose=False, random_state=None)

    # train the spca with our matrix
    spca.fit(dense_matrix)

    # return the components
    return spca.components_
开发者ID:MetaDataCool,项目名称:sviep-bigdata-python,代码行数:14,代码来源:main.py

示例6: test_initialization

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def test_initialization(norm_comp):
    rng = np.random.RandomState(0)
    U_init = rng.randn(5, 3)
    V_init = rng.randn(3, 4)
    model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0,
                      random_state=rng, normalize_components=norm_comp)
    model.fit(rng.randn(5, 4))
    if norm_comp:
        assert_allclose(model.components_,
                        V_init / np.linalg.norm(V_init, axis=1)[:, None])
    else:
        assert_allclose(model.components_, V_init)
开发者ID:MartinThoma,项目名称:scikit-learn,代码行数:14,代码来源:test_sparse_pca.py

示例7: test_fit_transform

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def test_fit_transform():
    alpha = 1
    rng = np.random.RandomState(0)
    Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)  # wide array
    spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
                          random_state=0)
    spca_lars.fit(Y)

    # Test that CD gives similar results
    spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0,
                           alpha=alpha)
    spca_lasso.fit(Y)
    assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
开发者ID:0x0all,项目名称:scikit-learn,代码行数:15,代码来源:test_sparse_pca.py

示例8: test_fit_transform_parallel

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def test_fit_transform_parallel():
    alpha = 1
    rng = np.random.RandomState(0)
    Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)  # wide array
    spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
                          random_state=0)
    spca_lars.fit(Y)
    U1 = spca_lars.transform(Y)
    # Test multiple CPUs
    spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha,
                     random_state=0).fit(Y)
    U2 = spca.transform(Y)
    assert_true(not np.all(spca_lars.components_ == 0))
    assert_array_almost_equal(U1, U2)
开发者ID:lebigot,项目名称:scikit-learn,代码行数:16,代码来源:test_sparse_pca.py

示例9: test_pca_vs_spca

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def test_pca_vs_spca():
    rng = np.random.RandomState(0)
    Y, _, _ = generate_toy_data(3, 1000, (8, 8), random_state=rng)
    Z, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)
    spca = SparsePCA(alpha=0, ridge_alpha=0, n_components=2,
                     normalize_components=True)
    pca = PCA(n_components=2)
    pca.fit(Y)
    spca.fit(Y)
    results_test_pca = pca.transform(Z)
    results_test_spca = spca.transform(Z)
    assert_allclose(np.abs(spca.components_.dot(pca.components_.T)),
                    np.eye(2), atol=1e-5)
    results_test_pca *= np.sign(results_test_pca[0, :])
    results_test_spca *= np.sign(results_test_spca[0, :])
    assert_allclose(results_test_pca, results_test_spca)
开发者ID:MartinThoma,项目名称:scikit-learn,代码行数:18,代码来源:test_sparse_pca.py

示例10: spca

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def spca(data, num_components=None, alpha=1):
		# creates a matrix with sparse principal component analysis
		# build matrix with all data
		data = [d.flatten() for d in data if not any(isnan(d))]
		datamatrix = row_stack(data)
		
		# center data
		cdata = datamatrix - mean(datamatrix, axis=0)
		
		if num_components is None:
			num_components = cdata.shape[0]
		
		# do spca on matrix
		spca = SparsePCA(n_components=num_components, alpha=alpha)
		spca.fit(cdata)
		
		# normalize components
		components = spca.components_.T
		for r in xrange(0,components.shape[1]):
			compnorm = numpy.apply_along_axis(numpy.linalg.norm, 0, components[:,r])
			if not compnorm == 0:
				components[:,r] /= compnorm
		components = components.T
		
		# calc adjusted explained variance from "Sparse Principal Component Analysis" by Zou, Hastie, Tibshirani
		spca.components_ = components
		#nuz = spca.transform(cdata).T
		nuz = ridge_regression(spca.components_.T, cdata.T, 0.01, solver='dense_cholesky').T
		
		#nuz = dot(components, cdata.T)
		q,r = qr(nuz.T)
		cumulative_var = []
		for i in range(1,num_components+1):
			cumulative_var.append(trace(r[0:i,]*r[0:i,]))
		explained_var = [math.sqrt(cumulative_var[0])]
		for i in range(1,num_components):
			explained_var.append(math.sqrt(cumulative_var[i])-math.sqrt(cumulative_var[i-1]))
		
		order = numpy.argsort(explained_var)[::-1]
		components = numpy.take(components,order,axis=0)
		evars = numpy.take(explained_var,order).tolist()
		#evars = numpy.take(explained_var,order)
		#order2 = [0,1,2,4,5,7,12,19]
		#components = numpy.take(components,order2,axis=0)
		#evars = numpy.take(evars,order2).tolist()
		
		return components, evars
开发者ID:9kopb,项目名称:clmtools,代码行数:49,代码来源:buildshape.py

示例11: test_fit_transform_tall

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def test_fit_transform_tall():
    rng = np.random.RandomState(0)
    Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng)  # tall array
    spca_lars = SparsePCA(n_components=3, method="lars", random_state=rng)
    U1 = spca_lars.fit_transform(Y)
    spca_lasso = SparsePCA(n_components=3, method="cd", random_state=rng)
    U2 = spca_lasso.fit(Y).transform(Y)
    assert_array_almost_equal(U1, U2)
开发者ID:kkuunnddaann,项目名称:scikit-learn,代码行数:10,代码来源:test_sparse_pca.py

示例12: test_fit_transform

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
def test_fit_transform():
    alpha = 1
    rng = np.random.RandomState(0)
    Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)  # wide array
    spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
                          random_state=0)
    spca_lars.fit(Y)

    # Test that CD gives similar results
    spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0,
                           alpha=alpha)
    spca_lasso.fit(Y)
    assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)

    # Test that deprecated ridge_alpha parameter throws warning
    warning_msg = "The ridge_alpha parameter on transform()"
    assert_warns_message(DeprecationWarning, warning_msg, spca_lars.transform,
                         Y, ridge_alpha=0.01)
    assert_warns_message(DeprecationWarning, warning_msg, spca_lars.transform,
                         Y, ridge_alpha=None)
开发者ID:lebigot,项目名称:scikit-learn,代码行数:22,代码来源:test_sparse_pca.py

示例13: SPCA

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
class SPCA(object):
    """
    Wrapper for sklearn package.  Performs sparse PCA

    SPCA has 5 methods:
       - fit(waveforms)
       update class instance with ICA fit

       - fit_transform()
       do what fit() does, but additionally return the projection onto ICA space

       - inverse_transform(A)
       inverses the decomposition, returns waveforms for an input A, using Z

       - get_basis()
       returns the basis vectors Z^\dagger

       - get_params()
       returns metadata used for fits.
    """
    def __init__(self, num_components=10,
                 catalog_name='unknown',
                 alpha = 0.1,
                 ridge_alpha = 0.01,
                 max_iter = 2000,
                 tol = 1e-9,
                 n_jobs = 1,
                 random_state = None):

        self._decomposition  = 'Sparse PCA'
        self._num_components = num_components
        self._catalog_name   = catalog_name
        self._alpha          = alpha
        self._ridge_alpha    = ridge_alpha
        self._n_jobs         = n_jobs
        self._max_iter       = max_iter
        self._tol            = tol
        self._random_state   = random_state

        self._SPCA = SparsePCA(n_components=self._num_components,
                              alpha        = self._alpha,
                              ridge_alpha  = self._ridge_alpha,
                              n_jobs       = self._n_jobs,
                              max_iter     = self._max_iter,
                              tol          = self._tol,
                              random_state = self._random_state)

    def fit(self,waveforms):
        # TODO make sure there are more columns than rows (transpose if not)
        # normalize waveforms
        self._waveforms = waveforms
        self._SPCA.fit(self._waveforms)

    def fit_transform(self,waveforms):
        # TODO make sure there are more columns than rows (transpose if not)
        # normalize waveforms
        self._waveforms = waveforms
        self._A = self._SPCA.fit_transform(self._waveforms)
        return self._A

    def inverse_transform(self,A):
        # convert basis back to waveforms using fit
        new_waveforms = self._SPCA.inverse_transform(A)
        return new_waveforms

    def get_params(self):
        # TODO know what catalog was used! (include waveform metadata)
        params = self._SPCA.get_params()
        params['num_components'] = params.pop('n_components')
        params['Decompositon'] = self._decomposition
        return params

    def get_basis(self):
        """ Return the SPCA basis vectors (Z^\dagger)"""
        Zt = self._SPCA.components_
        return Zt
开发者ID:bwengals,项目名称:ccsnmultivar,代码行数:78,代码来源:basis.py

示例14: fit

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
 def fit(self, dif_df):
     factorization = SparsePCA(n_components=self.n_components, alpha=0.03)
     X = dif_df.values[1:]
     self.ticker_symbols_used = dif_df.columns.values
     factorization.fit(X)
     self.factorization = factorization
开发者ID:datamath28,项目名称:gdelt_project,代码行数:8,代码来源:model.py

示例15: list

# 需要导入模块: from sklearn.decomposition import SparsePCA [as 别名]
# 或者: from sklearn.decomposition.SparsePCA import fit [as 别名]
N = 500
P = 10
MU = [0] * P
T = 1  # spike level
K = 2  # sparsity level
V = list(range(1,K+1)) + [0]*(P-K)
V = V / np.linalg.norm(V)
SIG = np.identity(P) + T * np.matrix(V).transpose() * np.matrix(V)
X = np.matrix(np.random.multivariate_normal(MU,SIG,N))

#####

# using scikit-learn method for Sparse PCA (like an l1-regularized dictionary learning problem)
from sklearn.decomposition import SparsePCA
spca = SparsePCA(n_components=1, alpha=5)
spca.fit(X)

from sklearn.decomposition import PCA
pca = PCA(n_components=1)
pca.fit(X)

print('Classical 1st principal component:', pca.components_)
print('Sparse 1st principal component:', spca.components_)

#####

# TODO: SDP implementation a la El Ghaoui, Bach, D'Aspremont
import cvxopt
# TWO CONSTRAINTS
# trace = 1 (multiply with identity)
# l1 norm <= k (multiply with all 1s matrix)
开发者ID:mikss,项目名称:sdp-ex,代码行数:33,代码来源:spca.py


注:本文中的sklearn.decomposition.SparsePCA.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。