本文整理汇总了Python中sklearn.decomposition.DictionaryLearning.transform方法的典型用法代码示例。如果您正苦于以下问题:Python DictionaryLearning.transform方法的具体用法?Python DictionaryLearning.transform怎么用?Python DictionaryLearning.transform使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.decomposition.DictionaryLearning
的用法示例。
在下文中一共展示了DictionaryLearning.transform方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_dict_learning_split
# 需要导入模块: from sklearn.decomposition import DictionaryLearning [as 别名]
# 或者: from sklearn.decomposition.DictionaryLearning import transform [as 别名]
def test_dict_learning_split():
n_atoms = 5
dico = DictionaryLearning(n_atoms, transform_algorithm='threshold')
code = dico.fit(X).transform(X)
dico.split_sign = True
split_code = dico.transform(X)
assert_array_equal(split_code[:, :n_atoms] - split_code[:, n_atoms:], code)
示例2: test_dict_learning_shapes
# 需要导入模块: from sklearn.decomposition import DictionaryLearning [as 别名]
# 或者: from sklearn.decomposition.DictionaryLearning import transform [as 别名]
def test_dict_learning_shapes():
n_components = 5
dico = DictionaryLearning(n_components, random_state=0).fit(X)
assert_equal(dico.components_.shape, (n_components, n_features))
n_components = 1
dico = DictionaryLearning(n_components, random_state=0).fit(X)
assert_equal(dico.components_.shape, (n_components, n_features))
assert_equal(dico.transform(X).shape, (X.shape[0], n_components))
示例3: test_dict_learning_nonzero_coefs
# 需要导入模块: from sklearn.decomposition import DictionaryLearning [as 别名]
# 或者: from sklearn.decomposition.DictionaryLearning import transform [as 别名]
def test_dict_learning_nonzero_coefs():
n_components = 4
dico = DictionaryLearning(n_components, transform_algorithm='lars',
transform_n_nonzero_coefs=3, random_state=0)
code = dico.fit(X).transform(X[np.newaxis, 1])
assert_true(len(np.flatnonzero(code)) == 3)
dico.set_params(transform_algorithm='omp')
code = dico.transform(X[np.newaxis, 1])
assert_equal(len(np.flatnonzero(code)), 3)
示例4: test_dict_learning_reconstruction
# 需要导入模块: from sklearn.decomposition import DictionaryLearning [as 别名]
# 或者: from sklearn.decomposition.DictionaryLearning import transform [as 别名]
def test_dict_learning_reconstruction():
n_components = 12
dico = DictionaryLearning(n_components, transform_algorithm='omp',
transform_alpha=0.001, random_state=0)
code = dico.fit(X).transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X)
dico.set_params(transform_algorithm='lasso_lars')
code = dico.transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
示例5: test_dict_learning_split
# 需要导入模块: from sklearn.decomposition import DictionaryLearning [as 别名]
# 或者: from sklearn.decomposition.DictionaryLearning import transform [as 别名]
def test_dict_learning_split():
n_components = 5
dico = DictionaryLearning(n_components, transform_algorithm='threshold',
random_state=0)
code = dico.fit(X).transform(X)
dico.split_sign = True
split_code = dico.transform(X)
assert_array_equal(split_code[:, :n_components] -
split_code[:, n_components:], code)
示例6: test_dict_learning_reconstruction_parallel
# 需要导入模块: from sklearn.decomposition import DictionaryLearning [as 别名]
# 或者: from sklearn.decomposition.DictionaryLearning import transform [as 别名]
def test_dict_learning_reconstruction_parallel():
# regression test that parallel reconstruction works with n_jobs=-1
n_components = 12
dico = DictionaryLearning(n_components, transform_algorithm='omp',
transform_alpha=0.001, random_state=0, n_jobs=-1)
code = dico.fit(X).transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X)
dico.set_params(transform_algorithm='lasso_lars')
code = dico.transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
示例7: test_dict_learning_positivity
# 需要导入模块: from sklearn.decomposition import DictionaryLearning [as 别名]
# 或者: from sklearn.decomposition.DictionaryLearning import transform [as 别名]
def test_dict_learning_positivity(transform_algorithm,
positive_code,
positive_dict):
n_components = 5
dico = DictionaryLearning(
n_components, transform_algorithm=transform_algorithm, random_state=0,
positive_code=positive_code, positive_dict=positive_dict).fit(X)
code = dico.transform(X)
if positive_dict:
assert_true((dico.components_ >= 0).all())
else:
assert_true((dico.components_ < 0).any())
if positive_code:
assert_true((code >= 0).all())
else:
assert_true((code < 0).any())
示例8: DictionaryLearning
# 需要导入模块: from sklearn.decomposition import DictionaryLearning [as 别名]
# 或者: from sklearn.decomposition.DictionaryLearning import transform [as 别名]
#Decomposition分解 to classify分类 with DictionaryLearning
from sklearn.decomposition import DictionaryLearning
dl = DictionaryLearning(3)
transformed = dl.fit_transform(iris_data[::2])
transformed[:5]
#array([[ 0. , 6.34476574, 0. ],
#[ 0. , 5.83576461, 0. ],
#[ 0. , 6.32038375, 0. ],
#[ 0. , 5.89318572, 0. ],
#[ 0. , 5.45222715, 0. ]])
#Next, let's fit (not fit_transform) the testing set:
transformed = dl.transform(iris_data[1::2])
#Putting it all together with Pipelines
#Let's briefly load the iris dataset and seed it with some missing values:
from sklearn.datasets import load_iris
import numpy as np
iris = load_iris()
iris_data = iris.data
mask = np.random.binomial(1, .25, iris_data.shape).astype(bool)
iris_data[mask] = np.nan
iris_data[:5]
#array([[ 5.1, 3.5, 1.4, nan],
#[ nan, 3. , 1.4, 0.2],
#[ 4.7, 3.2, 1.3, 0.2],
示例9: __init__
# 需要导入模块: from sklearn.decomposition import DictionaryLearning [as 别名]
# 或者: from sklearn.decomposition.DictionaryLearning import transform [as 别名]
class SparseCoding:
DEFAULT_MODEL_PARAMS = {
'n_components' : 10,
'n_features' : 64,
'max_iter' : 5,
'random_state' : 1,
'dict_init' : None,
'code_init' : None
}
def __init__(self, model_filename=None):
if model_filename is not None:
self.load_model(model_filename)
else:
# default model params
self.n_components = SparseCoding.DEFAULT_MODEL_PARAMS['n_components']
self.n_features = SparseCoding.DEFAULT_MODEL_PARAMS['n_features']
self.max_iter = SparseCoding.DEFAULT_MODEL_PARAMS['max_iter']
self.random_state = SparseCoding.DEFAULT_MODEL_PARAMS['random_state']
self.dict_init = SparseCoding.DEFAULT_MODEL_PARAMS['dict_init']
self.code_init = SparseCoding.DEFAULT_MODEL_PARAMS['code_init']
# initialize Dictionary Learning object with default params and weights
self.DL_obj = DictionaryLearning(n_components=self.n_components,
alpha=1,
max_iter=self.max_iter,
tol=1e-08,
fit_algorithm='lars',
transform_algorithm='omp',
transform_n_nonzero_coefs=None,
transform_alpha=None,
n_jobs=1,
code_init=self.code_init,
dict_init=self.dict_init,
verbose=False,
split_sign=False,
random_state=self.random_state)
def save_model(self, filename):
# save DL object to file, compress is also to prevent multiple model files.
joblib.dump(self.DL_obj, filename, compress=3)
def load_model(self, filename):
# load DL Object from file
self.DL_obj = joblib.load(filename)
# set certain model params as class attributes. Get values from DL Obj.get_params() or use default values.
DL_params = self.DL_obj.get_params()
for param in SparseCoding.DEFAULT_MODEL_PARAMS:
if param in DL_params:
setattr(self, param, DL_params[param])
else:
setattr(self, param, SparseCoding.DEFAULT_MODEL_PARAMS[param])
def learn_dictionary(self, whitened_patches):
# assert correct dimensionality of input data
if whitened_patches.ndim == 3:
whitened_patches = whitened_patches.reshape((whitened_patches.shape[0], -1))
assert whitened_patches.ndim == 2, "Whitened patches ndim is %d instead of 2" %whitened_patches.ndim
# learn dictionary
self.DL_obj.fit(whitened_patches)
def get_dictionary(self):
try:
return self.DL_obj.components_
except AttributeError:
raise AttributeError("Feature extraction dictionary has not yet been learnt for this model. " \
+ "Train the feature extraction model at least once to prevent this error.")
def get_sparse_features(self, whitened_patches):
# assert correct dimensionality of input data
if whitened_patches.ndim == 3:
whitened_patches = whitened_patches.reshape((whitened_patches.shape[0], -1))
assert whitened_patches.ndim == 2, "Whitened patches ndim is %d instead of 2" %whitened_patches.ndim
try:
sparse_code = self.DL_obj.transform(whitened_patches)
except NotFittedError:
raise NotFittedError("Feature extraction dictionary has not yet been learnt for this model, " \
+ "therefore Sparse Codes cannot be extracted. Train the feature extraction model " \
+ "at least once to prevent this error.")
return sparse_code
def get_sign_split_features(self, sparse_features):
n_samples, n_components = sparse_features.shape
sign_split_features = np.empty((n_samples, 2 * n_components))
sign_split_features[:, :n_components] = np.maximum(sparse_features, 0)
sign_split_features[:, n_components:] = -np.minimum(sparse_features, 0)
return sign_split_features
def get_pooled_features(self, input_feature_map, filter_size=(19,19)):
# assuming square filters and images
#.........这里部分代码省略.........