当前位置: 首页>>代码示例>>Python>>正文


Python PLSRegression.score方法代码示例

本文整理汇总了Python中sklearn.cross_decomposition.PLSRegression.score方法的典型用法代码示例。如果您正苦于以下问题:Python PLSRegression.score方法的具体用法?Python PLSRegression.score怎么用?Python PLSRegression.score使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.cross_decomposition.PLSRegression的用法示例。


在下文中一共展示了PLSRegression.score方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit

# 需要导入模块: from sklearn.cross_decomposition import PLSRegression [as 别名]
# 或者: from sklearn.cross_decomposition.PLSRegression import score [as 别名]
	def fit(self, predictors, predictands, locations, log=False, **kwargs):

		self.locations = locations
		self.models = []
		self.n = predictors['n']

		id = 0
		for location in locations:
			X = extract_n_by_n(predictors, location, **kwargs)
			Y = predictands[:,id]

			if log:
				Y = np.log(Y)

			#pca = PCA(n_components='mle', whiten=True)
			model = PLSRegression(n_components=2)
			
			model = model.fit(X,Y)
			#components = pca.components_
			#pca.components_ = components
			
			self.models.append(model)
			print "pls: ", location, model.score(X, Y), model.x_loadings_.shape, np.argmax(model.x_loadings_, axis=0)

			id += 1
开发者ID:jackaranda,项目名称:phasespace,代码行数:27,代码来源:pls_sklearn.py

示例2: lex_function_learning

# 需要导入模块: from sklearn.cross_decomposition import PLSRegression [as 别名]
# 或者: from sklearn.cross_decomposition.PLSRegression import score [as 别名]
def lex_function_learning( class_name,  hyper_vec ) :

		#pls2 = KernelRidge( kernel = "rbf", gamma= 100)
		#pls2 = KernelRidge( )
		pls2 = PLSRegression(n_components=50, max_iter=5000)

		X = extract_postive_features ( train_dataset[class_name][0], train_dataset[class_name][1] )			

		Y = []

		for hypo_vec in X :

			sub = hyper_vec-hypo_vec
			Y.append(sub) # Target = difference vector ( Hypernym_vector - Hyponym_vector )
			#Y.append(hyper_vec) # Target = Hypernym vector 

		pls2.fit( X, Y)	
		train_acc = pls2.score(X, Y)
		print "class = ", class_name, "train len = ", len(X)
		
		return pls2, train_acc, len(X)
开发者ID:anupama-gupta,项目名称:Hypernymy,代码行数:23,代码来源:hypernym_classification.py

示例3: plsvip

# 需要导入模块: from sklearn.cross_decomposition import PLSRegression [as 别名]
# 或者: from sklearn.cross_decomposition.PLSRegression import score [as 别名]
def plsvip (X, Y, V, lat_var):
    attributes = len(X[0])

    if not lat_var:
        latent_variables = attributes
    else:
        latent_variables = lat_var
		
    num_instances = len(X)	
	
    attributes_gone = []

    min_att = -1	

    #start_time = time.time()
    #attr_time = time.time()
    #time_counter = 0
    while attributes>0: 
        #if (attributes +9) %10 ==0:
        #    print "total time: ", time.time() - start_time
        #    print "attr time: ", time.time() - attr_time
        #    attr_time = time.time()

        if (latent_variables == 0) or (latent_variables > attributes):	
            latent_variables = attributes	

        lv_best = best_latent_variable(X, Y, latent_variables, num_instances)
        #print "current best lv: ", lv_best, "num. attr. ", attributes ####
		
        #fin_pls = PLSCanonical(n_components = lv_best)
        fin_pls = PLSRegression(n_components = lv_best)
        fin_pls.fit(X, Y)


        currentR2 = fin_pls.score(X, Y)  

        #######################################w
        # alternative r2
        """
        meanY4r2 = numpy.mean(Y)
        predY = fin_pls.predict(X)
        RSS = 0
        for i in range (len(Y)):
            RSS +=  numpy.power (Y[i] - predY[i], 2)
        TSS = 0
        for i in range (len(Y)):
            TSS += numpy.power (Y[i] - meanY4r2, 2)
        
        alterR2 = 1 - (RSS/TSS)
        #print currentR2, "vs", alterR2
        """
        #######################################w
        
        min_vip = 1000

        if min_att ==-1:
            attributes_gone.append(["None", currentR2, attributes, lv_best])

        ##########################################r
        #threaded version
        """ 
        myThreads = []
        VIPcurrent = []
        for i in range (0,attributes):
            myThreads.append(enthread( target = get_vip, args = (fin_pls, lv_best, i, attributes_gone, attributes  )) )
        for i in range (0,attributes):
            VIPcurrent.append(myThreads[i].get())
      
        min_vip = min(VIPcurrent)
        min_att = VIPcurrent.index(min_vip)
        """ 
        # Working version
        #"""
        for i in range (0,attributes):
            VIPcurrent = get_vip (fin_pls, lv_best, i, attributes_gone, attributes  )
            if VIPcurrent< min_vip:
                min_vip = VIPcurrent
                min_att = i
        #"""
        ##########################################r
        if min_att >-1:
            attributes_gone.append([V[min_att], currentR2, attributes, lv_best]) ####### CURRENT : to BE popped, NOT already popped
        V.pop(min_att)

        for i in range (num_instances):
            X[i].pop(min_att)

        attributes -= 1		
    #print attributes_gone ####
    #time_counter +=1
    return attributes_gone
开发者ID:KinkyDesign,项目名称:Jaqpot-docker-scripts-dev,代码行数:93,代码来源:pyson_complete.py

示例4: train_test_split

# 需要导入模块: from sklearn.cross_decomposition import PLSRegression [as 别名]
# 或者: from sklearn.cross_decomposition.PLSRegression import score [as 别名]
#correct not accurate
from sklearn.cross_validation import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn.svm import SVC
import numpy as np
import pandas as pd
from sklearn.cross_decomposition import PLSRegression
from sklearn.cross_decomposition import PLSCanonical
df=pd.read_csv('newdata.csv')
x=df.drop(['tag'],axis=1)
y=df.drop(['kx','ky','kz','wa','wb','wc','wd','we','wf'],axis=1)
X_train , X_test , Y_train , Y_test = train_test_split(x,y , random_state=5)

plsr=PLSRegression()
plsr.fit(X_train,Y_train)

plsc=PLSCanonical()
plsc.fit(X_train,Y_train)

print (plsr.score(X_test,Y_test))
print (plsc.score(X_test,Y_test))
开发者ID:MobeMody,项目名称:MachineLearning,代码行数:24,代码来源:CrossDecom.py

示例5: loadData

# 需要导入模块: from sklearn.cross_decomposition import PLSRegression [as 别名]
# 或者: from sklearn.cross_decomposition.PLSRegression import score [as 别名]
(Xtest, ytest) = loadData(xtestpath, ytestpath)

#trim off background and scale
ytrain=ytrain[:,1:]
#ytrain=scale(ytrain)
Xtrain=standardize(Xtrain)

#trim off background and scale
ytest = ytest[:,1:]
#ytest = scale(ytest)
Xtest = standardize(Xtest)

pls = PLSRegression(n_components=10)
pls.fit(Xtrain, ytrain)
y_pls = pls.predict(Xtest)
print 1 + pls.score(Xtest, ytest)


pls_rmse=[]
pls_rmse.append(sqrt(mean_squared_error(ytest[:,0], y_pls[:,0])))
pls_rmse.append(sqrt(mean_squared_error(ytest[:,1], y_pls[:,1])))
pls_rmse.append(sqrt(mean_squared_error(ytest[:,2], y_pls[:,2])))
pls_rmse.append(sqrt(mean_squared_error(ytest[:,3], y_pls[:,3])))

fig = plt.figure(figsize=(20,10))

ax1 = fig.add_subplot(241)
ax1.plot(y_pls[:,0], c='r', label='PLS Fit')
ax1.plot(ytest[:,0], c='grey', label='Target')
ax1.set_xlabel('Time')
ax1.set_ylabel('[c]')
开发者ID:mwalton,项目名称:artificial-olfaction,代码行数:33,代码来源:pls.py

示例6: round

# 需要导入模块: from sklearn.cross_decomposition import PLSRegression [as 别名]
# 或者: from sklearn.cross_decomposition.PLSRegression import score [as 别名]
                        print round(SVRpreds[i],2)
                        i += 1
        print "\n"
        SVRr2.append(optSVR.score(XTest, yTest))
        SVRmse.append( metrics.mean_squared_error(yTest,SVRpreds))
        SVRrmse.append(math.sqrt(SVRmse[metcount]))
        print ("Support Vector Regression prediction statistics for fold %d are; MSE = %5.2f RMSE = %5.2f R2 = %5.2f\n\n" % (metcount+1, SVRmse[metcount], SVRrmse[metcount],SVRr2[metcount]))
        with open(train_name,'a') as ftrain :
                ftrain.write("Support Vector Regression prediction statistics for fold %d are, MSE =, %5.2f, RMSE =, %5.2f, R2 =, %5.2f,\n\n" % (metcount+1, SVRmse[metcount], SVRrmse[metcount],SVRr2[metcount]))
        ftrain.close()

        # Train partial least squares and predict with optimised parameters
        print("\n\n------------------- Starting opitimised PLS training -------------------")
        optPLS = PLSRegression(n_components = nc)
        optPLS.fit(XTrain, yTrain)       # Train the model
        print("Training R2 = %5.2f" % optPLS.score(XTrain,yTrain))
        print("Starting optimised PLS prediction")
        PLSpreds = optPLS.predict(XTest)
        print("The predicted values now follow :")
        PLSpredsdim = PLSpreds.shape[0]
        i = 0
        if PLSpredsdim%5 == 0:
                while i < PLSpredsdim:
                        print round(PLSpreds[i],2),'\t', round(PLSpreds[i+1],2),'\t', round(PLSpreds[i+2],2),'\t', round(PLSpreds[i+3],2),'\t', round(PLSpreds[i+4],2)
                        i += 5
        elif PLSpredsdim%4 == 0:
                while i < PLSpredsdim:
                        print round(PLSpreds[i],2),'\t', round(PLSpreds[i+1],2),'\t', round(PLSpreds[i+2],2),'\t', round(PLSpreds[i+3],2)
                        i += 4
        elif PLSpredsdim%3 == 0 :
                while i < PLSpredsdim :
开发者ID:Jammyzx1,项目名称:ML-RF-SVM-PLS,代码行数:33,代码来源:ML.py


注:本文中的sklearn.cross_decomposition.PLSRegression.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。