当前位置: 首页>>代码示例>>Python>>正文


Python MinCovDet.fit方法代码示例

本文整理汇总了Python中sklearn.covariance.MinCovDet.fit方法的典型用法代码示例。如果您正苦于以下问题:Python MinCovDet.fit方法的具体用法?Python MinCovDet.fit怎么用?Python MinCovDet.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.covariance.MinCovDet的用法示例。


在下文中一共展示了MinCovDet.fit方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_mcd_issue1127

# 需要导入模块: from sklearn.covariance import MinCovDet [as 别名]
# 或者: from sklearn.covariance.MinCovDet import fit [as 别名]
def test_mcd_issue1127():
    # Check that the code does not break with X.shape = (3, 1)
    # (i.e. n_support = n_samples)
    rnd = np.random.RandomState(0)
    X = rnd.normal(size=(3, 1))
    mcd = MinCovDet()
    mcd.fit(X)
开发者ID:JeongSeonGyo,项目名称:EnergyData,代码行数:9,代码来源:test_robust_covariance.py

示例2: ols

# 需要导入模块: from sklearn.covariance import MinCovDet [as 别名]
# 或者: from sklearn.covariance.MinCovDet import fit [as 别名]
lm2 = ols('word_diff ~ Age + C(Centre_ID)',
         data=clean_st,subset=subset).fit()

print(lm2.summary())

# <markdowncell>

# # Snippets. Might come back to this later:

# <codecell>

from scipy.stats import pearsonr
from sklearn.covariance import MinCovDet

# just look at what's interesting for now, and drop the NAs involved
clean = st_v_merged.loc[:,['norm_diff','Interview_Suggested_Ranking_numerical_']]
clean = clean.dropna(axis=0)

# calculate robust covariance estimate, calculate what's too far away
mcd = MinCovDet()
mcd.fit(clean)

pearsonr(clean.iloc[:,0],clean.iloc[:,1])

# <codecell>

d = mcd.mahalanobis(clean)
d.sort()
d

开发者ID:kenben,项目名称:Suas,代码行数:31,代码来源:volunteer_quickLook.py

示例3: Outlier_detection

# 需要导入模块: from sklearn.covariance import MinCovDet [as 别名]
# 或者: from sklearn.covariance.MinCovDet import fit [as 别名]
class Outlier_detection(object):

    def __init__(self, support_fraction = 0.95, verbose = True, chi2_percentile = 0.995):
        self.verbose = verbose
        self.support_fraction = support_fraction
        self.chi2 = stats.chi2
        self.mcd = MCD(store_precision = True, support_fraction = support_fraction)
        self.chi2_percentile = chi2_percentile
        
    def fit(self, X):
        """Prints some summary stats (if verbose is one) and returns the indices of what it consider to be extreme"""
        self.mcd.fit(X)
        mahalanobis = lambda p: distance.mahalanobis(p, self.mcd.location_, self.mcd.precision_  )
        d = np.array(map(mahalanobis, X)) #Mahalanobis distance values
        self.d2 = d ** 2 #MD squared
        n, self.degrees_of_freedom_ = X.shape
        self.iextreme_values = (self.d2 > self.chi2.ppf(0.995, self.degrees_of_freedom_) )
        if self.verbose:
            print "%.3f proportion of outliers at %.3f%% chi2 percentile, "%(self.iextreme_values.sum()/float(n), self.chi2_percentile)
            print "with support fraction %.2f."%self.support_fraction
        return self

    def plot(self,log=False, sort = False ):
        """
        Cause plotting is always fun.
        
        log: transform the distance-sq to a log ( distance-sq )
        sort: sort the data according to distnace before plotting
        ifollow: a set if indices to mark with yellow, useful for seeing where data lies across views.
        
        """
        n = self.d2.shape[0]
        fig = plt.figure()
        
        x = np.arange( n )
        ax = fig.add_subplot(111)
 
 
        transform = (lambda x: x ) if not log else (lambda x: np.log(x))
        chi_line = self.chi2.ppf(self.chi2_percentile, self.degrees_of_freedom_)     
        
        chi_line = transform( chi_line )
        d2 = transform( self.d2 )
        if sort:
            isort = np.argsort( d2 )    
            ax.scatter(x, d2[isort], alpha = 0.7, facecolors='none' )
            plt.plot( x, transform(self.chi2.ppf( np.linspace(0,1,n),self.degrees_of_freedom_ )), c="r", label="distribution assuming normal" )
            
        
        else:
            ax.scatter(x, d2 )
            extreme_values = d2[ self.iextreme_values ]
            ax.scatter( x[self.iextreme_values], extreme_values, color="r" )
            
        ax.hlines( chi_line, 0, n, 
                        label ="%.1f%% $\chi^2$ quantile"%(100*self.chi2_percentile), linestyles = "dotted" )

        ax.legend()
        ax.set_ylabel("distance squared")
        ax.set_xlabel("observation")
        ax.set_xlim(0, self.d2.shape[0])


        plt.show()
开发者ID:Alkesten,项目名称:Python-Numerics,代码行数:66,代码来源:outlier.py


注:本文中的sklearn.covariance.MinCovDet.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。