当前位置: 首页>>代码示例>>Python>>正文


Python Ward.fit_predict方法代码示例

本文整理汇总了Python中sklearn.cluster.Ward.fit_predict方法的典型用法代码示例。如果您正苦于以下问题:Python Ward.fit_predict方法的具体用法?Python Ward.fit_predict怎么用?Python Ward.fit_predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.cluster.Ward的用法示例。


在下文中一共展示了Ward.fit_predict方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: hieclu

# 需要导入模块: from sklearn.cluster import Ward [as 别名]
# 或者: from sklearn.cluster.Ward import fit_predict [as 别名]
def hieclu(data_matrix, k):
	#use Hierarchical clustering
	print 'using hierarchical clustering......'
	ac = Ward(n_clusters=k)
	ac.fit(data_matrix)
	result = ac.fit_predict(data_matrix)
	return result
开发者ID:chenzheng128,项目名称:evaluate_cluster,代码行数:9,代码来源:evaluate.py

示例2: hierarchicalClustering

# 需要导入模块: from sklearn.cluster import Ward [as 别名]
# 或者: from sklearn.cluster.Ward import fit_predict [as 别名]
def hierarchicalClustering(x,k):
    model = Ward(n_clusters=k)
    labels = model.fit_predict(np.asarray(x))

    # Centroids is a list of lists
    centroids = []
    for c in range(k):
        base = []
        for d in range(len(x[0])):
            base.append(0)
        centroids.append(base)

    # Stores number of examples per cluster
    ctrs = np.zeros(k)

    # Sum up all vectors for each cluster
    for c in range(len(x)):
        centDex = labels[c]
        for d in range(len(centroids[centDex])):
            centroids[centDex][d] += x[c][d]
        ctrs[centDex] += 1

    # Average the vectors in each cluster to get the centroids
    for c in range(len(centroids)):
        for d in range(len(centroids[c])):
            centroids[c][d] = centroids[c][d]/ctrs[c]

    return (centroids,labels)
开发者ID:lbenning,项目名称:Load-Forecasting,代码行数:30,代码来源:clustering.py

示例3: __hieclu

# 需要导入模块: from sklearn.cluster import Ward [as 别名]
# 或者: from sklearn.cluster.Ward import fit_predict [as 别名]
	def __hieclu(self):
		#use Hierarchical clustering
		print 'using hierarchical clustering......'
		ac = Ward(n_clusters = self.k)
		ac.fit(self.data_matrix)
		result = ac.fit_predict(self.data_matrix)
		return result
开发者ID:chenzheng128,项目名称:evaluate_cluster,代码行数:9,代码来源:evaluate_class.py

示例4: constraint

# 需要导入模块: from sklearn.cluster import Ward [as 别名]
# 或者: from sklearn.cluster.Ward import fit_predict [as 别名]
    def constraint(self, nodes, edges, lables):
        if len(nodes) != len(lables):
            print("#nodes(%d) != #clusters(%d)" % (len(nodes), len(lables)))

        N = len(nodes)
        circles = {}

        guidance_matrix = sp.zeros([N, N])
        # guidance_matrix = {}
        for i in range(len(nodes)):
            if lables[i] in circles:
                circles[lables[i]].append(nodes[i])
            else:
                circles[lables[i]] = [nodes[i]]

        for key in circles.iterkeys():
            print(key, len(circles[key]))

        c = 36
        for ni in circles[c]:
            i = nodes.index(ni)
            for nj in circles[c]:
                j = nodes.index(nj)
                guidance_matrix[i, j] = 1.0

        guidance_matrix = sparse.lil_matrix(guidance_matrix)

        # pos = sum(x > 0 for x in guidance_matrix)
        print(guidance_matrix)
        ward = Ward(n_clusters=6, n_components=2, connectivity=guidance_matrix)
        predicts = ward.fit_predict(self.A)

        print(predicts)
开发者ID:gnavvy,项目名称:ParaIF,代码行数:35,代码来源:Control.py

示例5: agglomerate

# 需要导入模块: from sklearn.cluster import Ward [as 别名]
# 或者: from sklearn.cluster.Ward import fit_predict [as 别名]
    def agglomerate(self, nodes, edges, clusters):
        if len(nodes) != len(clusters):
            print("#nodes(%d) != #clusters(%d)" % (len(nodes), len(clusters)))

        neighbors = {}
        for edge in edges:
            if edge[0] in neighbors:
                neighbors[edge[0]].append(edge[1])
            else:
                neighbors[edge[0]] = [edge[1]]

        node_clusters = {}  # node: its cluster id
        communities = {}    # cluster id: all neighbors for its members
        for i in range(len(nodes)):
            if clusters[i] in communities:
                communities[clusters[i]].extend(neighbors[nodes[i]])
            else:
                communities[clusters[i]] = neighbors[nodes[i]]
            node_clusters[nodes[i]] = clusters[i]

        N = len(communities)
        affinity_matrix = sp.zeros([N, N])
        for comm in communities:
            members = [node_clusters[node] for node in communities[comm]]
            degree = dict(Counter(members))
            for key in degree:
                affinity_matrix[comm, key] = degree[key]

        ward = Ward(n_clusters=6)
        predicts = ward.fit_predict(affinity_matrix)

        return [predicts[node_clusters[node]] for node in nodes]
开发者ID:gnavvy,项目名称:ParaIF,代码行数:34,代码来源:Control.py

示例6: cluster_ward

# 需要导入模块: from sklearn.cluster import Ward [as 别名]
# 或者: from sklearn.cluster.Ward import fit_predict [as 别名]
def cluster_ward(classif_data, vect_data):
	ward = Ward(n_clusters=10)

	np_arr_train = np.array(vect_data["train_vect"])
	np_arr_label = np.array(classif_data["topics"])
	np_arr_test = np.array(vect_data["test_vect"])

	labels = ward.fit_predict(np_arr_train)
	print "Ward"
	sil_score = metrics.silhouette_score(np_arr_train, labels, metric='euclidean')
	print sil_score
	
	return labels
开发者ID:tangohead,项目名称:CS909-Project,代码行数:15,代码来源:helper.py

示例7: get_km_segments

# 需要导入模块: from sklearn.cluster import Ward [as 别名]
# 或者: from sklearn.cluster.Ward import fit_predict [as 别名]
def get_km_segments(x, image, sps, n_segments=25):
    if len(x) == 2:
        feats, edges = x
    else:
        feats, edges, _ = x
    colors_ = get_colors(image, sps)
    centers = get_centers(sps)
    n_spixel = len(feats)
    graph = sparse.coo_matrix((np.ones(edges.shape[0]), edges.T), shape=(n_spixel, n_spixel))
    ward = Ward(n_clusters=n_segments, connectivity=graph + graph.T)
    # km = KMeans(n_clusters=n_segments)
    color_feats = np.hstack([colors_, centers * 0.5])
    # return km.fit_predict(color_feats)
    return ward.fit_predict(color_feats)
开发者ID:kod3r,项目名称:segmentation,代码行数:16,代码来源:hierarchical_segmentation.py

示例8: hierarchical

# 需要导入模块: from sklearn.cluster import Ward [as 别名]
# 或者: from sklearn.cluster.Ward import fit_predict [as 别名]
 def hierarchical(self, n_clusters):
     ward = Ward(n_clusters=n_clusters)
     return ward.fit_predict(sp.array(self.A))
开发者ID:gnavvy,项目名称:ParaIF,代码行数:5,代码来源:Control.py


注:本文中的sklearn.cluster.Ward.fit_predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。