当前位置: 首页>>代码示例>>Python>>正文


Python SpectralClustering.fit_predict方法代码示例

本文整理汇总了Python中sklearn.cluster.SpectralClustering.fit_predict方法的典型用法代码示例。如果您正苦于以下问题:Python SpectralClustering.fit_predict方法的具体用法?Python SpectralClustering.fit_predict怎么用?Python SpectralClustering.fit_predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.cluster.SpectralClustering的用法示例。


在下文中一共展示了SpectralClustering.fit_predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: spectral_clustering2

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def spectral_clustering2(similarity, concepts=2, euclid=False):
    if euclid:
        model = SpectralClustering(n_clusters=concepts, affinity='nearest_neighbors')
        return model.fit_predict(similarity)
    else:
        model = SpectralClustering(n_clusters=concepts, affinity='precomputed')
        similarity[similarity < 0] = 0
        return model.fit_predict(similarity)
开发者ID:thran,项目名称:experiments2.0,代码行数:10,代码来源:clusterings.py

示例2: run

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
	def run(self, k):
		if self.data_is_kernel:
			clf = SpectralClustering(n_clusters=k, gamma=self.gammav, affinity='precomputed')	
			self.allocation = clf.fit_predict(self.X)
			self.kernel = self.X
		else:
			clf = SpectralClustering(n_clusters=k, gamma=self.gammav)		#, affinity='precomputed'
			self.allocation = clf.fit_predict(self.X)
			self.kernel = clf.affinity_matrix_
	
		return self.allocation
开发者ID:juliaprocess,项目名称:chieh_libs,代码行数:13,代码来源:spectral_clustering.py

示例3: compute_centroid_set

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
    def compute_centroid_set(self, **kwargs):

        INPUT_ITR = subset_iterator(X=self.docv, m=self.subcluster_m, repeats=self.subcluster_repeats)

        kn = self.subcluster_kn
        clf = SpectralClustering(n_clusters=kn, affinity="precomputed")

        C = []

        for X in INPUT_ITR:
            # Remove any rows that have zero vectors
            bad_row_idx = (X ** 2).sum(axis=1) == 0
            X = X[~bad_row_idx]
            A = cosine_affinity(X)

            labels = clf.fit_predict(A)

            # Compute the centroids
            (N, dim) = X.shape
            centroids = np.zeros((kn, dim))

            for i in range(kn):
                idx = labels == i
                mu = X[idx].mean(axis=0)
                mu /= np.linalg.norm(mu)
                centroids[i] = mu

            C.append(centroids)

        return np.vstack(C)
开发者ID:NIHOPA,项目名称:pipeline_word2vec,代码行数:32,代码来源:metacluster.py

示例4: create_word2vec_cluster

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def create_word2vec_cluster(word2vec_model):
    word_vectors = word2vec_model.syn0
    num_clusters = word_vectors.shape[0] / 1000
    spectral_cluster_model = SpectralClustering(n_clusters=num_clusters)
    idx = spectral_cluster_model.fit_predict(word_vectors)
    pickle.dump(spectral_cluster_model, open(r"C:\Ofir\Tau\Machine Learning\Project\project\k_means_model.pkl", "wb"))
    return spectral_cluster_model
开发者ID:ogreenz,项目名称:Sentiment_Analysis_Movie_Reviews,代码行数:9,代码来源:clean_util.py

示例5: spectral_clustering

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def spectral_clustering(matrix, N):
    spectral = SpectralClustering(n_clusters=N)
    clusters = spectral.fit_predict(matrix)
    res = [[] for _ in range(N)]
    for i, c in enumerate(clusters):
        res[c].append(i)
    return res
开发者ID:seba-1511,项目名称:specialists,代码行数:9,代码来源:specialist.py

示例6: scikit_pca

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def scikit_pca(model, rel_wds, plot_lims, title, cluster="kmeans"):
    """
    Given a word2vec model and a cluster (choice of "kmeans" or "spectral")
    Make a plot of all word-vectors in the model.
    """
    X, keys = make_data_matrix(model)

    for i, key in enumerate(keys):
        X[i,] = model[key]

    if cluster == "kmeans":
        k_means = KMeans(n_clusters=8)
        labels = k_means.fit_predict(X)

    elif cluster == "spectral":
        sp_clust = SpectralClustering()
        labels = sp_clust.fit_predict(X)

    # PCA
    X_std = StandardScaler().fit_transform(X)
    sklearn_pca = PCA(n_components=2)
    X_transf = sklearn_pca.fit_transform(X_std)

    scatter_plot(X_transf[:,0], X_transf[:,1],  rel_wds, labels, title, keys, plot_lims)

    return sklearn_pca.explained_variance_ratio_
开发者ID:quinngroup,项目名称:sm_w2v,代码行数:28,代码来源:plot_utils.py

示例7: spectral_clustering

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def spectral_clustering(k, X, G, W=None, run_times=5):
    if type(W) == type(None):
        W = np.eye(len(X))
    W2 = np.sqrt(W)
    Gtilde = W2.dot(G.dot(W2))
    sc = SpectralClustering(k, affinity='precomputed', n_init=run_times)
    zh = sc.fit_predict(Gtilde)
    return zh
开发者ID:neurodata,项目名称:non-parametric-clustering,代码行数:10,代码来源:wrapper.py

示例8: get_coregulatory_states

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def get_coregulatory_states(corr_matrices, similarity_matrix, n_clusters):
    spectral = SpectralClustering(n_clusters=n_clusters, affinity='precomputed')
    labels = spectral.fit_predict(similarity_matrix)

    coreg_states = {}
    for ci in np.unique(labels):
        coreg_states[ci] = corr_matrices[labels == ci, :, :].mean(axis=0)
    return coreg_states, labels
开发者ID:dimenwarper,项目名称:scimitar,代码行数:10,代码来源:coexpression.py

示例9: dist_spectral

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def dist_spectral(x, y):

    plot = []
    for s in range(dataset.shape[0]):
        plot.append(np.array([x[s], y[s]]))
    plot = np.array(plot)
    spectral = SpectralClustering(n_clusters=3, eigen_solver='arpack', affinity="nearest_neighbors")
    clusters = spectral.fit_predict(plot)
    return clusters
开发者ID:cguls,项目名称:DataScienceFinal,代码行数:11,代码来源:final.py

示例10: spectral

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def spectral(k, X, G, run_times=10):
    """Spectral clustering from sklearn library. 
    run_times is the number of times the algorithm is gonna run with different
    initializations.
    
    """
    sc = SpectralClustering(k, affinity='precomputed', n_init=run_times)
    zh = sc.fit_predict(G)
    return zh
开发者ID:neurodata,项目名称:non-parametric-clustering,代码行数:11,代码来源:run_clustering.py

示例11: spectral_clustering

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def spectral_clustering(S,X,config):
    '''
    Computes spectral clustering from an input similarity matrix.
    Returns the labels associated with the clustering.
    '''
    from sklearn.cluster import SpectralClustering

    nk = int(config["n_clusters"])
    clf = SpectralClustering(affinity='cosine',n_clusters=nk)
    return clf.fit_predict(X)
开发者ID:NIHOPA,项目名称:pipeline_word2vec,代码行数:12,代码来源:similarity.py

示例12: spectral

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def spectral(k, X, G, z, run_times=10):
    """Spectral clustering from sklearn library. 
    run_times is the number of times the algorithm is gonna run with different
    initializations.
    
    """
    sc = SpectralClustering(k, affinity='precomputed', n_init=run_times)
    zh = sc.fit_predict(G)
    a = metric.accuracy(z, zh)
    v = metric.variation_information(z, zh)
    return a, v
开发者ID:neurodata,项目名称:non-parametric-clustering,代码行数:13,代码来源:run_clustering_bk.py

示例13: cluster_faces_CNN

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def cluster_faces_CNN(name = '[email protected]', img_list = 'faces_list.txt'):
    root = '/Users/wangyufei/Documents/Study/intern_adobe/face_recognition_CNN/'+name + '/'
    f = open(root + model_name + 'similarity_matrix.cPickle','r')
    affinity_matrix = cPickle.load(f)
    f.close()

    f = SpectralClustering(affinity='precomputed', n_clusters=min(8, affinity_matrix.shape[0] - 1), eigen_solver = 'arpack', n_neighbors=min(5, affinity_matrix.shape[0]))
    a = f.fit_predict(affinity_matrix)

    groups = {}
    temp = zip(a, xrange(len(a)))
    for i in temp:
        if i[0] not in groups:
            groups[i[0]] = [i[1]]
        else:
            groups[i[0]].append(i[1])
    unique_person_id = []
    for kk in groups:
        min_similarity = np.Inf
        max_similarity = -np.Inf
        mean_similarity = 0
        this_group_ids = groups[kk]
        for j in xrange(len(this_group_ids)):
            for i in xrange(j+1, len(this_group_ids)):
                temp = affinity_matrix[this_group_ids[i],this_group_ids[j]]
                if temp < min_similarity:
                    min_similarity = temp
                if temp > max_similarity:
                    max_similarity = temp
                mean_similarity += temp
        mean_similarity /= max(1, len(this_group_ids)*(len(this_group_ids) - 1) / 2)
        print len(this_group_ids), mean_similarity, max_similarity, min_similarity
        if mean_similarity > 0.5:
            unique_person_id.append(kk)
    important_person = []
    for i in unique_person_id:
        important_person.append([i, len(groups[i])])
    important_person.sort(key = lambda x:x[1], reverse=True)
    in_path = root + img_list
    imgs_list = []
    with open(in_path, 'r') as data:
        for line in data:
            line = line[:-1]
            imgs_list.append(line.split('/')[-1])

    temp = zip(a, imgs_list)
    face_groups = {}
    for i in temp:
        if i[0] not in face_groups:
            face_groups[i[0]] = [i[1]]
        else:
            face_groups[i[0]].append(i[1])

    create_face_group_html_CNN(name, face_groups, important_person)
开发者ID:feiyu1990,项目名称:intern,代码行数:56,代码来源:face_recognition_CNN.py

示例14: spectral_clustering

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def spectral_clustering(crime_rows, column_names, num_clusters, affinity='rbf', n_neighbors=0,
        assign_labels='kmeans'):
    """
        n_clusters : integer, optional
            The dimension of the projection subspace.
        affinity : string, array-like or callable, default ‘rbf’
            If a string, this may be one of ‘nearest_neighbors’, ‘precomputed’, ‘rbf’ 
            or one of the kernels supported by sklearn.metrics.pairwise_kernels.
            Only kernels that produce similarity scores 
                (non-negative values that increase with similarity) should be used. 
                This property is not checked by the clustering algorithm.
        gamma : float
            Scaling factor of RBF, polynomial, exponential chi^2 and sigmoid affinity kernel. 
            Ignored for affinity='nearest_neighbors'.
        degree : float, default=3
            Degree of the polynomial kernel. Ignored by other kernels.
        coef0 : float, default=1
            Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.
        n_neighbors : integer
            Number of neighbors to use when constructing the affinity matrix 
            using the nearest neighbors method. Ignored for affinity='rbf'.
        n_init : int, optional, default: 10
            Number of time the k-means algorithm will be run with different 
                centroid seeds. 
            The final results will be the best output of n_init consecutive runs in 
                terms of inertia.
        assign_labels : {‘kmeans’, ‘discretize’}, default: ‘kmeans’
            The strategy to use to assign labels in the embedding space. 
            There are two ways to assign labels after the laplacian embedding. 
            k-means can be applied and is a popular choice. 
            But it can also be sensitive to initialization. 
            Discretization is another approach which is less sensitive to 
            random initialization.
        kernel_params : dictionary of string to any, optional
            Parameters (keyword arguments) and values for kernel passed 
                as callable object. Ignored by other kernels.
    """
    crime_xy = [crime[0:2] for crime in crime_rows]
    crime_info = [crime[2:] for crime in crime_rows]
    #crime_xy = [crime[1:] for crime in crime_rows]
    spectral_clustering = SpectralClustering(
            n_clusters=num_clusters, 
            affinity=affinity, 
            n_neighbors=n_neighbors, 
            assign_labels=assign_labels)
    print("Running spectral clustering....")
    print("length crimexy")
    print(len(crime_xy))
    spectral_clustering_labels = spectral_clustering.fit_predict(
            random_sampling(crime_xy, num_samples=3000))
    print("Formatting......")
    return _format_clustering(spectral_clustering_labels, crime_xy, crime_info,
            column_names, num_clusters=num_clusters)
开发者ID:egaebel,项目名称:crime-on-the-move-back-end--Python,代码行数:55,代码来源:clustering.py

示例15: predictSpectralClustering

# 需要导入模块: from sklearn.cluster import SpectralClustering [as 别名]
# 或者: from sklearn.cluster.SpectralClustering import fit_predict [as 别名]
def predictSpectralClustering(X, y, n=2, val='rbf'):
	ranX, ranY = shuffle(X, y, random_state=0)
	X = X[:600,]
	y = y[:600,]
	sc = SpectralClustering(n_clusters=n)
	results = sc.fit_predict(X)
	gini = compute_gini(results)
	if n == 2:
		same = calculate_score(results, y)
		opp = calculate_score(results, y, True)
		return (results, max(same, opp), gini)
	else:
		return (results, 0, gini)
开发者ID:BIDS-collaborative,项目名称:EDAM,代码行数:15,代码来源:spectral.py


注:本文中的sklearn.cluster.SpectralClustering.fit_predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。