本文整理汇总了Python中sklearn.cluster.MeanShift.predict方法的典型用法代码示例。如果您正苦于以下问题:Python MeanShift.predict方法的具体用法?Python MeanShift.predict怎么用?Python MeanShift.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.cluster.MeanShift
的用法示例。
在下文中一共展示了MeanShift.predict方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mean_shift
# 需要导入模块: from sklearn.cluster import MeanShift [as 别名]
# 或者: from sklearn.cluster.MeanShift import predict [as 别名]
def mean_shift(model_data, prediction_data = None):
t0 = time()
ms = MeanShift().fit(model_data)
if prediction_data == None:
labels = ms.predict(model_data)
else:
labels = ms.predict(prediction_data)
means = ms.cluster_centers_
print "Number of Means:", means.shape[0]
print "Mean Shift Time: %0.3f" % (time() - t0)
return labels, means
示例2: meanshiftt
# 需要导入模块: from sklearn.cluster import MeanShift [as 别名]
# 或者: from sklearn.cluster.MeanShift import predict [as 别名]
def meanshiftt(data):
bandwidth = estimate_bandwidth(data, quantile=0.2, n_samples=10)
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(data)
idx = ms.predict(data);
ctrs = ms.cluster_centers_
return idx, ctrs
示例3: clustering_mean_shift
# 需要导入模块: from sklearn.cluster import MeanShift [as 别名]
# 或者: from sklearn.cluster.MeanShift import predict [as 别名]
def clustering_mean_shift(data_res, b):
"""
Executes the mean shift model from sklearn
"""
ms = MeanShift(bandwidth=b)
ms.fit(data_res)
predictions = ms.predict(data_res)
cluster_centers = ms.cluster_centers_
return predictions, cluster_centers
示例4: pipeline
# 需要导入模块: from sklearn.cluster import MeanShift [as 别名]
# 或者: from sklearn.cluster.MeanShift import predict [as 别名]
def pipeline(chunks, directory, chunks_file_name, chunks_centers_file_name, n_clus, bw):
"""
Main pipeline for the first phase of data mining.
Chunks clustering.
"""
# calculate the proportion of events
chunks = calc_proportions(chunks)
print 'Clustering first model...'
first_model = KMeans(n_clusters=n_clus, n_jobs=8)
first_model.fit(chunks.ix[:,15:25])
centers = first_model.cluster_centers_
print 'Clustering second model...'
second_model = MeanShift(bandwidth=bw)
second_model.fit(centers)
print "Final number of clusters of chunks with MeanShift: " + str(len(second_model.cluster_centers_))
chunks['label'] = second_model.predict(chunks.ix[:,15:25])
centers = DataFrame(second_model.cluster_centers_, columns= TIME_SERIES_NAMES)
centers.to_csv(directory + chunks_centers_file_name, index=False)
chunks.to_csv(directory + chunks_file_name, index=False)
示例5: test_meanshift_predict
# 需要导入模块: from sklearn.cluster import MeanShift [as 别名]
# 或者: from sklearn.cluster.MeanShift import predict [as 别名]
def test_meanshift_predict():
"""Test MeanShift.predict"""
ms = MeanShift(bandwidth=1.2)
labels = ms.fit_predict(X)
labels2 = ms.predict(X)
assert_array_equal(labels, labels2)
示例6: KMeans
# 需要导入模块: from sklearn.cluster import MeanShift [as 别名]
# 或者: from sklearn.cluster.MeanShift import predict [as 别名]
kmeans2 = KMeans(n_clusters=3, init=km_clcentr[:])
kmeans2.fit(seed_data)
for i in range(datacount):
kmeans2.labels_[i] += 1
print kmeans2.labels_[:]
# meanshift clustering
bw = estimate_bandwidth(seed_data, quantile=0.2)
#print "MeanShift bandwidth:", bw
ms = MeanShift(bandwidth=bw, bin_seeding=True)
ms.fit(seed_data)
#print ms.labels_[:]
#print seed_res
pred = ms.predict(seed_data)
for i in range(datacount):
if pred[i] == 0:
pred[i] = 3
print ms.labels_[:]
print "seedresult-Kmeans accuracy:", accuracy_score(seed_res, kmeans2.labels_)
print "seedresult-Meanshift accuracy:", accuracy_score(seed_res, pred)
print "Kmeans-Meanshift accuracy:", accuracy_score(kmeans2.labels_, pred)
#compdict = []
#for i in range(datacount):
# compdict.append([seed_res[i], pred[i]])
示例7:
# 需要导入模块: from sklearn.cluster import MeanShift [as 别名]
# 或者: from sklearn.cluster.MeanShift import predict [as 别名]
for classification in clf.classifications:
color = colors[classification]
for featureset in clf.classifications[classification]:
plt.scatter(featureset[0], featureset[1], marker='x', color=color, s=150, linewidths=5)
unknowns = np.array([[1,3],
[8,9],
[0,3],
[5,4],
[6,4]])
for unknown in unknowns:
classification = clf.predict(unknown)
plt.scatter(unknown[0], unknown[1], marker='*', color=colors[classification])
plt.show()