当前位置: 首页>>代码示例>>Python>>正文


Python AgglomerativeClustering.set_params方法代码示例

本文整理汇总了Python中sklearn.cluster.AgglomerativeClustering.set_params方法的典型用法代码示例。如果您正苦于以下问题:Python AgglomerativeClustering.set_params方法的具体用法?Python AgglomerativeClustering.set_params怎么用?Python AgglomerativeClustering.set_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.cluster.AgglomerativeClustering的用法示例。


在下文中一共展示了AgglomerativeClustering.set_params方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: outlier_clusters_ward

# 需要导入模块: from sklearn.cluster import AgglomerativeClustering [as 别名]
# 或者: from sklearn.cluster.AgglomerativeClustering import set_params [as 别名]
def outlier_clusters_ward(x, y, skill=None, memory=None):
    # TODO: incorporate skill
    data = np.vstack((x, y)).T

    if len(data) == 0:
        # uh.
        print 'clustering: NO cluster members!'
        cluster_centers = np.array([[-1, -1]])
        cluster_labels = []
        labels = []
        n_clusters = 0
        dist_within = np.array([])

    elif len(data) == 1:
        print 'clustering: only 1 data point!'
        cluster_centers = data
        cluster_labels = [0]
        labels = np.array([0])
        n_clusters = 1
        dist_within = np.array([0])

    else:
        dist_within = 1000
        dist_max = 75
        n_clusters = 0
        n_clusters_max = 10

        clusterer = AgglomerativeClustering(n_clusters=n_clusters,
                memory=memory)

        # while dist_within > dist_max, keep adding clusters
        while (dist_within > dist_max) * (n_clusters < n_clusters_max):
            # iterate n_clusters
            n_clusters += 1
            clusterer.set_params(n_clusters=n_clusters)

            # cluster
            labels = clusterer.fit_predict(data)

            # get cluster_centers
            cluster_labels = range(n_clusters)
            cluster_centers = np.array([np.mean(data[labels == i], axis=0)
                                        for i in cluster_labels])

            # find dist_within: the maximum pairwise distance inside a cluster
            dist_within = np.max([np.max(pairwise_distances(
                                  data[labels == i]))
                                  for i in cluster_labels])

    dist_within_final = np.array([np.max(pairwise_distances(
            data[labels == i])) for i in cluster_labels])

    return cluster_centers, cluster_labels, labels, n_clusters, dist_within_final
开发者ID:kapadia,项目名称:SpaceWarps,代码行数:55,代码来源:make_lens_catalog.py


注:本文中的sklearn.cluster.AgglomerativeClustering.set_params方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。