本文整理汇总了Python中skimage.transform.rescale函数的典型用法代码示例。如果您正苦于以下问题:Python rescale函数的具体用法?Python rescale怎么用?Python rescale使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了rescale函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: resc
def resc(patch):
"""
:param patch: [image,mask]
:return: random rescaling of the pair [image,mask]
--- Rescaling reinforces axons size diversity ---
"""
s = random.choice([0.5, 0.75, 1.0, 1.5, 2.0])
data_rescale=[]
for scale in s:
image_rescale = rescale(patch[0], scale)
mask_rescale = rescale(patch[1], scale)
s_r = mask_rescale.shape[0]
q_h, r_h = divmod(256-s_r,2)
if q_h > 0 :
image_rescale = np.pad(image_rescale,(q_h, q_h+r_h), mode = "reflect")
mask_rescale = np.pad(mask_rescale,(q_h, q_h+r_h), mode = "reflect")
else :
patches = extract_patch(image_rescale,mask_rescale, 256)
i = np.random.randint(len(patches), size=1)
image_rescale,mask_rescale = patches[i]
mask_rescale = preprocessing.binarize(np.array(mask_rescale), threshold=0.001)
data_rescale = [image_rescale, mask_rescale]
return data_rescale
示例2: read_image
def read_image(name, size=None, debug=False):
""" read image and segmentation, returns RGB + alpha composite """
image = imread(name) / 255.
if image.shape[2] == 4:
alpha = image[...,3]
image = image[...,:3]
else:
segmentation_name = os.path.splitext(name)[0][:-6] + '-label.png'
segmentation = imread(segmentation_name)
alpha = np.logical_or(segmentation[...,0], segmentation[...,1]) * 1.
if size is not None:
scale_x = float(size[0]) / image.shape[1]
scale_y = float(size[1]) / image.shape[0]
scale = min(scale_x, scale_y)
if debug:
print name, size[0], size[1], image.shape[1], image.shape[0], scale, image.shape[1]*scale, image.shape[0]*scale
if scale > 1.0:
print 'Image %s smaller than requested size' % name
if scale != 1.0:
image = rescale(image, scale, order=3)
alpha = rescale(alpha, scale, order=0)
return np.dstack((image, alpha))
示例3: test_iradon_angles
def test_iradon_angles():
"""
Test with different number of projections
"""
size = 100
# Synthetic data
image = np.tri(size) + np.tri(size)[::-1]
# Large number of projections: a good quality is expected
nb_angles = 200
radon_image_200 = radon(image, theta=np.linspace(0, 180, nb_angles,
endpoint=False))
reconstructed = iradon(radon_image_200)
delta_200 = np.mean(abs(rescale(image) - rescale(reconstructed)))
assert delta_200 < 0.03
# Lower number of projections
nb_angles = 80
radon_image_80 = radon(image, theta=np.linspace(0, 180, nb_angles,
endpoint=False))
# Test whether the sum of all projections is approximately the same
s = radon_image_80.sum(axis=0)
assert np.allclose(s, s[0], rtol=0.01)
reconstructed = iradon(radon_image_80)
delta_80 = np.mean(abs(image / np.max(image) -
reconstructed / np.max(reconstructed)))
# Loss of quality when the number of projections is reduced
assert delta_80 > delta_200
示例4: standardize_roi_height
def standardize_roi_height(roi, standard_height=20, rel_height=0.666):
h = standard_height * 5
y = roi.sum(1)
yp = y[y >= y.max() * rel_height]
pw = yp.shape[0]
sf = standard_height / pw
sh = int(np.ceil(float(roi.shape[0]) * sf))
if sh <= h: # if the scale factor estimation isn't off try to rescale according to the central part
res = rescale(roi, sf)
else:
if h < roi.shape[0]: # if the thing is too big, squeez it down
sf = h / roi.shape[0]
res = rescale(roi, sf)
else: # if the scale factor estimation is off,
res = roi # but the image is still smaller than the standard, just center.
# TODO: the centering should depend on the symmetry of the word (4 cases: are, gone, to, for)
# w = res.shape[1]
# c = int(h / 2)
# os_p = int(np.floor(res.shape[0] / 2))
# os_m = int(np.ceil(res.shape[0] / 2))
# uni = np.zeros((h, w))
# uni[c - os_m: c + os_p, :] = res
# Pad
zer = np.zeros((1, res.shape[1]))
uni = np.append(zer, res, axis=0)
uni = np.append(uni, zer, axis=0)
uni = uni / uni.max()
return uni
示例5: scale_images
def scale_images(self, data, scaleRatio=-1):
if scaleRatio <= 0:
scaleRatio = self.scaleRatio
if data.ndim == 3:
for i in xrange(data.shape[0]):
scale_dim = self.rng.random_integers(1)
if scale_dim:
#Scale in first dimension
img_scaled = st.rescale(data[i], scale=(scaleRatio, 1))
scaled_shape = img_scaled.T.shape
I = numpy.eye(scaled_shape[0], scaled_shape[1])
data[i] = numpy.dot(I, img_scaled)
else:
#Scale in the second dimension
img_scaled = st.rescale(data[i], scale=(1, scaleRatio))
scaled_shape = img_scaled.T.shape
I = numpy.eye(scaled_shape[0], scaled_shape[1])
data[i] = numpy.dot(img_scaled, I)
else:
scale_dim = self.rng.random_integers(1)
if scale_dim:
#Scale in first dimension
img_scaled = st.rescale(data, scale=(scaleRatio, 1))
scaled_shape = img_scaled.T.shape
I = numpy.eye(scaled_shape[0], scaled_shape[1])
data = numpy.dot(I, img_scaled)
else:
#Scale in the second dimension
img_scaled = st.rescale(data, scale=(1, scaleRatio))
scaled_shape = img_scaled.T.shape
I = numpy.eye(scaled_shape[0], scaled_shape[1])
data = numpy.dot(img_scaled, I)
return data
示例6: test_rescale_invalid_scale
def test_rescale_invalid_scale():
x = np.zeros((10, 10, 3))
with testing.raises(ValueError):
rescale(x, (2, 2),
multichannel=False, anti_aliasing=False, mode='constant')
with testing.raises(ValueError):
rescale(x, (2, 2, 2),
multichannel=True, anti_aliasing=False, mode='constant')
示例7: test_rescale_multichannel_defaults
def test_rescale_multichannel_defaults():
# multichannel should always default to False as of 0.16
x = np.zeros((8, 3), dtype=np.double)
scaled = rescale(x, 2, order=0, anti_aliasing=False, mode='constant')
assert_equal(scaled.shape, (16, 6))
x = np.zeros((8, 8, 3), dtype=np.double)
scaled = rescale(x, 2, order=0, anti_aliasing=False, mode='constant')
assert_equal(scaled.shape, (16, 16, 6))
示例8: pyramid
def pyramid(I1, I2):
if (I1.shape[0]<=500 and I1.shape[1]<=500):
return findBestRoll(I1, I2, range(-15, 15), range(-15, 15))
else:
I1R = rescale(I1, 0.5)
I2R = rescale(I2, 0.5)
rangeValues = pyramid(I1R, I2R)
print(rangeValues)
return findBestRoll(I1, I2, range(rangeValues[0]*2-2, rangeValues[0]*2+3), range(rangeValues[1]*2-2, rangeValues[1]*2+3))
示例9: rescale_images
def rescale_images(im1, im2, pts):
p1, p2, p3, p4 = pts
len1 = np.sqrt((p2[1] - p1[1])**2 + (p2[0] - p1[0])**2)
len2 = np.sqrt((p4[1] - p3[1])**2 + (p4[0] - p3[0])**2)
dscale = len2/len1
if dscale < 1:
im1 = sktr.rescale(im1, dscale)
else:
im2 = sktr.rescale(im2, 1./dscale)
return im1, im2
示例10: test_warp_clip
def test_warp_clip():
x = np.zeros((5, 5), dtype=np.double)
x[2, 2] = 1
outx = rescale(x, 3, order=3, clip=False)
assert outx.min() < 0
outx = rescale(x, 3, order=3, clip=True)
assert_almost_equal(outx.min(), 0)
assert_almost_equal(outx.max(), 1)
示例11: scale_lesion
def scale_lesion(lesion, size):
""" scale segmented lesion to uniform size """
image = lesion[...,:3]
alpha = lesion[...,3]
scale = float(size) / max(*alpha.shape)
if scale != 1.0:
image = rescale(image, scale, order=3)
alpha = rescale(alpha, scale, order=0)
return np.dstack((image, alpha))
示例12: fit_in_box
def fit_in_box(s, s_mask, s_max, t_max):
# Resize foreground and mask so area fits in box
y_ratio = float(t_max[0])/s_max[0]
x_ratio = float(t_max[1])/s_max[1]
if y_ratio > x_ratio:
s = rescale(s, x_ratio)
s_mask = rescale(s_mask, x_ratio)
else:
s = rescale(s, y_ratio)
s_mask = rescale(s_mask, y_ratio)
return s, s_mask
示例13: test_warp_clip
def test_warp_clip():
x = np.zeros((5, 5), dtype=np.double)
x[2, 2] = 1
outx = rescale(x, 3, order=3, clip=False,
multichannel=False, anti_aliasing=False, mode='constant')
assert outx.min() < 0
outx = rescale(x, 3, order=3, clip=True,
multichannel=False, anti_aliasing=False, mode='constant')
assert_almost_equal(outx.min(), 0)
assert_almost_equal(outx.max(), 1)
示例14: test_warp_clip
def test_warp_clip():
x = np.zeros((5, 5), dtype=np.double)
x[2, 2] = 1
with expected_warnings(['The default mode', 'The default multichannel']):
outx = rescale(x, 3, order=3, clip=False)
assert outx.min() < 0
with expected_warnings(['The default mode', 'The default multichannel']):
outx = rescale(x, 3, order=3, clip=True)
assert_almost_equal(outx.min(), 0)
assert_almost_equal(outx.max(), 1)
示例15: random_backgrond
def random_backgrond(weights=[2, 8, 4, 3, 0.2, 0.2, 0.5], start_level=1, end_level=None):
img = np.random.normal(0, 1, (start_level, start_level)) * weights[0]
i = start_level - 1
for i, w in enumerate(weights[1:], start_level):
r = np.random.normal(0, 1, (2**i, 2**i))
img = rescale(img, 2) + w*r
if end_level and end_level != i:
img = rescale(img, 2**(end_level - i))
img = (img - img.min())
img /= img.max()
return img