当前位置: 首页>>代码示例>>Python>>正文


Python measure.block_reduce函数代码示例

本文整理汇总了Python中skimage.measure.block_reduce函数的典型用法代码示例。如果您正苦于以下问题:Python block_reduce函数的具体用法?Python block_reduce怎么用?Python block_reduce使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了block_reduce函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: downsample

def downsample(data):
    data["_tr_X"] = np.zeros((len(data["tr_X"]), 14 * 14), dtype="float32")
    data["_va_X"] = np.zeros((len(data["va_X"]), 14 * 14), dtype="float32")
    data["_te_X"] = np.zeros((len(data["te_X"]), 14 * 14), dtype="float32")

    for i in xrange(0, len(data["tr_X"])):
        data["_tr_X"][i] = block_reduce(
            data["tr_X"][i].reshape(data["shape_x"]), block_size=(2, 2), func=np.mean
        ).flatten()

    for i in xrange(0, len(data["va_X"])):
        data["_va_X"][i] = block_reduce(
            data["va_X"][i].reshape(data["shape_x"]), block_size=(2, 2), func=np.mean
        ).flatten()

    for i in xrange(0, len(data["te_X"])):
        data["_te_X"][i] = block_reduce(
            data["te_X"][i].reshape(data["shape_x"]), block_size=(2, 2), func=np.mean
        ).flatten()

    data["tr_X"] = data["_tr_X"]
    data["va_X"] = data["_va_X"]
    data["te_X"] = data["_te_X"]

    data["shape_x"] = (14, 14)
    data["n_x"] = 14 * 14
    return data
开发者ID:ronvohra,项目名称:Theano-Lights,代码行数:27,代码来源:toolbox.py

示例2: test_invalid_block_size

def test_invalid_block_size():
    image = np.arange(4 * 6).reshape(4, 6)

    with testing.raises(ValueError):
        block_reduce(image, [1, 2, 3])
    with testing.raises(ValueError):
        block_reduce(image, [1, 0.5])
开发者ID:TheArindham,项目名称:scikit-image,代码行数:7,代码来源:test_block.py

示例3: get_recorded_data

    def get_recorded_data(self, vec):
        '''Extract recorded voltages and timestamps given the recorded Vector instance.  
        If self.stimulus_sampling_rate is smaller than self.simulation_sampling_rate, 
        resample to self.stimulus_sampling_rate.

        Parameters
        ----------
        vec : neuron.Vector 
           constructed by self.record_values

        Returns
        -------
        dict with two keys: 'v' = numpy.ndarray with voltages, 't' = numpy.ndarray with timestamps

        '''
        junction_potential = self.description.data['fitting'][0]['junction_potential']
        
        v = np.array(vec["v"])
        t = np.array(vec["t"])

        if self.stimulus_sampling_rate < self.simulation_sampling_rate:
            factor = self.simulation_sampling_rate / self.stimulus_sampling_rate
                
            Utils._log.debug("subsampling recorded traces by %dX", factor)
            v = block_reduce(v, (factor,), np.mean)[:len(self.stim_curr)]
            t = block_reduce(t, (factor,), np.min)[:len(self.stim_curr)]

        mV = 1.0e-3
        v = (v - junction_potential) * mV
        
        return { "v": v, "t": t }
开发者ID:AllenInstitute,项目名称:AllenSDK,代码行数:31,代码来源:utils.py

示例4: k8_down_hints

def k8_down_hints(x):
    RGB = x[:, :, 0:3].astype(np.float)
    A = x[:, :, 3:4].astype(np.float)
    RGB = RGB * A / 255.0
    RGB = block_reduce(RGB, (8, 8, 1), np.max)
    A = block_reduce(A, (8, 8, 1), np.max)
    y = np.concatenate([RGB, A], axis=2)
    return y
开发者ID:codealphago,项目名称:style2paints,代码行数:8,代码来源:tricks.py

示例5: mycorrelate2d

def mycorrelate2d(fixed,moved,skip=1):
    """a 2d correlation function for numpy 2d matrices
    
    arguments
    fixed) is the larger matrix which should stay still 
    moved) is the smaller matrix which should move left/right up/down and sample the correlation
    skip) is the number of positions to skip over when sampling, 
    so if skip =3 it will sample at shift 0,0 skip,0 2*skip,0... skip,0 skip,skip...
    
    returns
    corrmat) the 2d matrix with the corresponding correlation coefficents of the data at that offset
    note the 0,0 entry of corrmat corresponds to moved(0,0) corresponding to fixed(0,0)
    and the 1,1 entry of corrmat corresponds to moved(0,0) corresponding to fixed(skip,skip)
    NOTE) the height of corrmat is given by corrmat.height=ceil((fixed.height-moved.height)/skip)
    and the width in a corresonding manner.
    NOTE)the standard deviation is measured over the entire dataset, so particular c values can be above 1.0
    if the variance in the subsampled region of fixed is lower than the variance of the entire matrix
    
    """
    if skip>1:
        fixed = block_reduce(fixed,block_size = (int(skip),int(skip)),func = np.mean,cval=np.mean(fixed))
        moved = block_reduce(moved,block_size = (int(skip),int(skip)),func = np.mean,cval=np.mean(moved))

    (fh,fw)=fixed.shape
    (mh,mw)=moved.shape
    deltah=(fh-mh)
    deltaw=(fw-mw)
    #if (deltah<1 or deltaw<1):
    #    return
    #fixed=fixed-fixed.mean()
    #fixed=fixed/fixed.std()
    #moved=moved-moved.mean()
    #moved=moved/moved.std()
    # ch=np.ceil(deltah*1.0/skip)
    # cw=np.ceil(deltaw*1.0/skip)
    
    # corrmat=np.zeros((ch,cw))
    
    # #print (fh,fw,mh,mw,ch,cw,skip,deltah,deltaw)
    # for shiftx in range(0,deltaw,skip):
    #     for shifty in range(0,deltah,skip):
    #         fixcut=fixed[shifty:shifty+mh,shiftx:shiftx+mw]
    #         corrmat[shifty/skip,shiftx/skip]=(fixcut*moved).sum()
           
    # corrmat=corrmat/(mh*mw)
    

    corrmatt = norm_xcorr.norm_xcorr(moved,fixed, trim=True, method='fourier')

    print 'corrmatt',corrmatt.shape
    print 'moved',moved.shape
    print 'fixed',fixed.shape

    #image_product = np.fft.fft2(fixed) * np.fft.fft2(moved).conj()
    #corrmat = np.fft.fftshift(np.fft.ifft2(image_product))

    return corrmatt
开发者ID:facepalm,项目名称:MosaicPlannerLive,代码行数:57,代码来源:MosaicImage.py

示例6: align_georasters

def align_georasters(raster,alignraster,how=np.mean,cxsize=None,cysize=None):
    '''
    Align two rasters so that data overlaps by geographical location
    Usage: (alignedraster_o, alignedraster_a) = AlignRasters(raster, alignraster, how=np.mean)
    where 
        raster: string with location of raster to be aligned
        alignraster: string with location of raster to which raster will be aligned
        how: function used to aggregate cells (if the rasters have different sizes)
    It is assumed that both rasters have the same size
    '''
    (NDV1, xsize1, ysize1, GeoT1, Projection1, DataType1)=(raster.nodata_value, raster.shape[1], raster.shape[0], raster.geot, raster.projection, raster.datatype)
    (NDV2, xsize2, ysize2, GeoT2, Projection2, DataType2)=(alignraster.nodata_value, alignraster.shape[1], alignraster.shape[0], alignraster.geot, alignraster.projection, alignraster.datatype)
    if Projection1.ExportToMICoordSys()==Projection2.ExportToMICoordSys():
        blocksize=(np.round(max(GeoT2[1]/GeoT1[1],1)),np.round(max(GeoT2[-1]/GeoT1[-1],1)))
        mraster=raster.raster
        mmin=mraster.min()
        if block_reduce!=(1,1):
            mraster=block_reduce(mraster,blocksize,func=how)
        blocksize=(np.round(max(GeoT1[1]/GeoT2[1],1)),np.round(max(GeoT1[-1]/GeoT2[-1],1)))
        araster=alignraster.raster
        amin=araster.min()
        if block_reduce!=(1,1):
            araster=block_reduce(araster,blocksize,func=how)
        if GeoT1[0]<=GeoT2[0]:
            row3,mcol=map_pixel(GeoT2[0], GeoT2[3], GeoT1[1] *blocksize[0],GeoT1[-1]*blocksize[1], GeoT1[0], GeoT1[3])
            acol=0
        else:
            row3,acol=map_pixel(GeoT1[0], GeoT1[3], GeoT2[1],GeoT2[-1], GeoT2[0], GeoT2[3])
            mcol=0
        if GeoT1[3]<=GeoT2[3]:
            arow,col3=map_pixel(GeoT1[0], GeoT1[3], GeoT2[1],GeoT2[-1], GeoT2[0], GeoT2[3])
            mrow=0
        else:
            mrow,col3=map_pixel(GeoT2[0], GeoT2[3], GeoT1[1] *blocksize[0],GeoT1[-1]*blocksize[1], GeoT1[0], GeoT1[3])
            arow=0
        mraster=mraster[mrow:,mcol:]
        araster=araster[arow:,acol:]
        if cxsize and cysize:
            araster=araster[:cysize,:cxsize]
            mraster=mraster[:cysize,:cxsize]
        else:
            rows = min(araster.shape[0],mraster.shape[0])
            cols = min(araster.shape[1],mraster.shape[1])
            araster=araster[:rows,:cols]
            mraster=mraster[:rows,:cols]
        mraster=np.ma.masked_array(mraster,mask=mraster<mmin, fill_value=NDV1)
        araster=np.ma.masked_array(araster,mask=araster<amin, fill_value=NDV2)
        GeoT=(max(GeoT1[0],GeoT2[0]), GeoT1[1]*blocksize[0], GeoT1[2], min(GeoT1[3],GeoT2[3]), GeoT1[4] ,GeoT1[-1]*blocksize[1])
        mraster=GeoRaster(mraster, GeoT, projection=Projection1, nodata_value=NDV1, datatype=DataType1)
        araster=GeoRaster(araster, GeoT, projection=Projection2, nodata_value=NDV2, datatype=DataType2)
        return (mraster,araster)
    else:
        print("Rasters need to be in same projection")
        return (-1,-1)
开发者ID:EmilStenstrom,项目名称:georasters,代码行数:54,代码来源:georasters.py

示例7: test_block_reduce_mean

def test_block_reduce_mean():
    image1 = np.arange(4 * 6).reshape(4, 6)
    out1 = block_reduce(image1, (2, 3), func=np.mean)
    expected1 = np.array([[  4.,   7.],
                          [ 16.,  19.]])
    assert_equal(expected1, out1)

    image2 = np.arange(5 * 8).reshape(5, 8)
    out2 = block_reduce(image2, (4, 5), func=np.mean)
    expected2 = np.array([[14. , 10.8],
                          [ 8.5,  5.7]])
    assert_equal(expected2, out2)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:12,代码来源:test_block.py

示例8: test_block_reduce_min

def test_block_reduce_min():
    image1 = np.arange(4 * 6).reshape(4, 6)
    out1 = block_reduce(image1, (2, 3), func=np.min)
    expected1 = np.array([[ 0, 3],
                          [12, 15]])
    assert_equal(expected1, out1)

    image2 = np.arange(5 * 8).reshape(5, 8)
    out2 = block_reduce(image2, (4, 5), func=np.min)
    expected2 = np.array([[0, 0],
                          [0, 0]])
    assert_equal(expected2, out2)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:12,代码来源:test_block.py

示例9: test_block_reduce_max

def test_block_reduce_max():
    image1 = np.arange(4 * 6).reshape(4, 6)
    out1 = block_reduce(image1, (2, 3), func=np.max)
    expected1 = np.array([[ 8, 11],
                          [20, 23]])
    assert_equal(expected1, out1)

    image2 = np.arange(5 * 8).reshape(5, 8)
    out2 = block_reduce(image2, (4, 5), func=np.max)
    expected2 = np.array([[28, 31],
                          [36, 39]])
    assert_equal(expected2, out2)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:12,代码来源:test_block.py

示例10: test_block_reduce_sum

def test_block_reduce_sum():
    image1 = np.arange(4 * 6).reshape(4, 6)
    out1 = block_reduce(image1, (2, 3))
    expected1 = np.array([[ 24,  42],
                          [ 96, 114]])
    assert_equal(expected1, out1)

    image2 = np.arange(5 * 8).reshape(5, 8)
    out2 = block_reduce(image2, (3, 3))
    expected2 = np.array([[ 81, 108,  87],
                          [174, 192, 138]])
    assert_equal(expected2, out2)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:12,代码来源:test_block.py

示例11: Location_Shape

def Location_Shape(img,segments,segments_label):
    # 72-D Feature
    row,col = segments.shape
    location_block_row = int(math.ceil(row/6.))
    location_block_col = int(math.ceil(col/6.))

    Location_Shape_Features = []
    for label in range(len(segments_label)):
        # Make mask for each segment
        seg_mask = Segment_Mask(segments, label)

        ### Get Location Features
        # Downsample to 6*6
        try:
            downsample = block_reduce(seg_mask, block_size=(location_block_row, location_block_col), cval = 0, func=np.max)
            # Convert to 36-D Location Features
            Location_Features = downsample.flatten().tolist()
        except:
            Location_Features = [0 for x in range(36)]

        ### Get Shape Features
        # Bounding Box
        left,up,right,down = Image.fromarray(np.uint8(seg_mask)).getbbox()

        # Cropped the mask
        cropped_mask =  seg_mask[up:down,left:right]

        # Downsample to 6*6
        cropped_row,cropped_col = cropped_mask.shape

        ### When the number is too small, there would be a bug
        ### Consider this special situation
        if cropped_row < 26:
            cropped_mask = cropped_mask[:(cropped_row-cropped_row%6),:]
        if cropped_col < 26:
            cropped_mask = cropped_mask[:,:(cropped_col-cropped_col%6)]

        cropped_row,cropped_col = cropped_mask.shape
        cropped_block_row = int(math.ceil(cropped_row/6.))
        cropped_block_col = int(math.ceil(cropped_col/6.))

        try:
            downsample = block_reduce(cropped_mask, block_size=(cropped_block_row, cropped_block_col), cval = 0, func=np.max)
            # Convert to 36-D Shape Features
            Shape_Features = downsample.flatten().tolist()
        except:
            Shape_Features = [0 for x in range(36)]

        Location_Shape_Features.append(Location_Features+Shape_Features)

    return Location_Shape_Features
开发者ID:Dream1607,项目名称:FlowerRecognition,代码行数:51,代码来源:Segmentation.py

示例12: test_block_reduce_median

def test_block_reduce_median():
    image1 = np.arange(4 * 6).reshape(4, 6)
    out1 = block_reduce(image1, (2, 3), func=np.median)
    expected1 = np.array([[  4.,   7.],
                          [ 16.,  19.]])
    assert_equal(expected1, out1)

    image2 = np.arange(5 * 8).reshape(5, 8)
    out2 = block_reduce(image2, (4, 5), func=np.median)
    expected2 = np.array([[ 14.,  6.5],
                          [  0.,  0. ]])
    assert_equal(expected2, out2)

    image3 = np.array([[1, 5, 5, 5], [5, 5, 5, 1000]])
    out3 = block_reduce(image3, (2, 4), func=np.median)
    assert_equal(5, out3)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:16,代码来源:test_block.py

示例13: block_reduce

def block_reduce(data, block_size, func=np.sum):
    
    # Backported from Astropy 1.1 for compatibility 

    from skimage.measure import block_reduce

    data = np.asanyarray(data)

    block_size = np.atleast_1d(block_size)
    if data.ndim > 1 and len(block_size) == 1:
        block_size = np.repeat(block_size, data.ndim)

    if len(block_size) != data.ndim:
        raise ValueError('`block_size` must be a scalar or have the same '
                         'length as `data.shape`')

    block_size = np.array([int(i) for i in block_size])
    size_resampled = np.array(data.shape) // block_size
    size_init = size_resampled * block_size

    # trim data if necessary
    for i in range(data.ndim):
        if data.shape[i] != size_init[i]:
            data = data.swapaxes(0, i)
            data = data[:size_init[i]]
            data = data.swapaxes(0, i)

    return block_reduce(data, tuple(block_size), func=func)
开发者ID:bmorris3,项目名称:glue-3d-viewer,代码行数:28,代码来源:backports.py

示例14: convolve

def convolve(img, sigma=4):
    '''
    2D Gaussian convolution
    '''

    if img.sum() == 0:
        return img

    img_pad = np.zeros((3 * img.shape[0], 3 * img.shape[1]))
    img_pad[img.shape[0]:2 * img.shape[0], img.shape[1]:2 * img.shape[1]] = img

    x = np.arange(3 * img.shape[0])
    y = np.arange(3 * img.shape[1])
    g = spinterp.interp2d(y, x, img_pad, kind='linear')

    if img.shape[0] == 16:
        upsample = 4
        offset = -(1 - .625)
    elif img.shape[0] == 8:
        upsample = 8
        offset = -(1 - .5625)
    else:
        raise NotImplementedError
    ZZ_on = g(offset + np.arange(0, img.shape[1] * 3, 1. / upsample), offset + np.arange(0, img.shape[0] * 3, 1. / upsample))
    ZZ_on_f = gaussian_filter(ZZ_on, float(sigma), mode='constant')

    z_on_new = block_reduce(ZZ_on_f, (upsample, upsample))
    z_on_new = z_on_new / z_on_new.sum() * img.sum()
    z_on_new = z_on_new[img.shape[0]:2 * img.shape[0], img.shape[1]:2 * img.shape[1]]

    return z_on_new
开发者ID:AllenInstitute,项目名称:AllenSDK,代码行数:31,代码来源:utilities.py

示例15: test_block_reduce_mask_array

    def test_block_reduce_mask_array(self):
        test_array = np.arange(16).reshape((4, 4))
        assert_array_equal(test_array[0], [0, 1, 2, 3], verbose=True)
        assert_array_equal(test_array[1], [4, 5, 6, 7], verbose=True)
        assert_array_equal(test_array[2], [8, 9, 10, 11], verbose=True)
        assert_array_equal(test_array[3], [12, 13, 14, 15], verbose=True)

        mask_array = np.full((4, 4), False, dtype=np.bool)
        mask_array[1:3, 1:3] = True
        assert_array_equal(mask_array[0], [False, False, False, False], verbose=True)
        assert_array_equal(mask_array[1], [False,  True,  True, False], verbose=True)
        assert_array_equal(mask_array[2], [False,  True,  True, False], verbose=True)
        assert_array_equal(mask_array[3], [False, False, False, False], verbose=True)

        masked_array = np.ma.array(test_array, mask=mask_array)
        self.assertTrue(np.ma.is_masked(masked_array))
        assert_array_equal(masked_array[0], [0, 1, 2, 3], verbose=True)
        assert_array_equal(masked_array[1], [4, np.nan, np.nan, 7], verbose=True)
        assert_array_equal(masked_array[2], [8, np.nan, np.nan, 11], verbose=True)
        assert_array_equal(masked_array[3], [12, 13, 14, 15], verbose=True)

        mean_aggregated_array = block_reduce(masked_array, (2, 2), func=np.mean)

        self.assertEqual((2, 2), mean_aggregated_array.shape)
        # The mask is ignored in the block_reduce function
        assert_array_equal(mean_aggregated_array[0], [(0 + 1 + 4 + 5) / 4, (2 + 3 + 6 + 7) / 4], verbose=True)
        assert_array_equal(mean_aggregated_array[1], [(8 + 9 + 12 + 13) / 4, (10 + 11 + 14 + 15) / 4], verbose=True)
开发者ID:CAB-LAB,项目名称:cablab-core,代码行数:27,代码来源:test_aggregation.py


注:本文中的skimage.measure.block_reduce函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。