当前位置: 首页>>代码示例>>Python>>正文


Python io.show函数代码示例

本文整理汇总了Python中skimage.io.show函数的典型用法代码示例。如果您正苦于以下问题:Python show函数的具体用法?Python show怎么用?Python show使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了show函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: align_img

def align_img(image_name, loss_fn=sum_of_squared_diff, max_disp = 15, big=False, name=None, hist_eq = False):
    b,g,r = get_bgr(image_name)

    if hist_eq == True:
        b, g, r = exposure.equalize_hist(b), exposure.equalize_hist(g), exposure.equalize_hist(r)

    print("Aligning green and blue: ")
    ag = align(g, b, loss_fn=loss_fn, max_disp = max_disp, big=big, name=name)
    print("Aligning blue and red: ")
    ar = align(r, b, loss_fn=loss_fn, max_disp = max_disp, big=big, name=name)
    # create a color image
    im_out = np.dstack([ar, ag, b])
    plt.show()

    # save the image
    iname = image_name.split('.')
    iname[-1] = 'jpg'
    image_name = '.'.join(iname)
    fname = 'out_' + image_name
    skio.imsave(fname, im_out)

    # display the image
    skio.imshow(im_out)
    plt.show()
    skio.show()
开发者ID:girishbalaji,项目名称:girishbalaji.github.io,代码行数:25,代码来源:main.py

示例2: test_with_pro_2

def test_with_pro_2(rawImg,pro):
    ''' Use this fuc when ### above are first implement'''
    ref = rawImg.copy()
    img = auto_resized(rawImg,conf['train_resolution'])
    img_gray = cv2.cvtColor( img , cv2.COLOR_BGR2GRAY)
    roi = img_gray
    (boxes, probs) = od.detect(roi, winStep=conf["step_size"], winDim=conf["sliding_size"],
    pyramidScale=1.1, minProb=pro)
    # since for size effect with the camera, pyramidScale = 1.001, mnust>1, 
    # if positive size would change, we have to use 1.5 or 2 ...etc 
    pick = non_max_suppression(np.array(boxes), probs, conf["overlap_thresh"])
    orig = img.copy()

    # Resize Back, I am GOD !!!!! 
    y_sizeFactor = ref.shape[0]/float(img.shape[0])
    x_sizeFactor = ref.shape[1]/float(img.shape[1])

    # loop over the allowed bounding boxes and draw them
    for (startX, startY, endX, endY) in pick:
        #cv2.rectangle(orig, (startX, startY), (endX, endY), (0, 255, 0), 2)
        startX = int(startX* x_sizeFactor)
        endX   = int(endX  * x_sizeFactor)
        startY = int(startY* y_sizeFactor)
        endY   = int(endY  * y_sizeFactor)        
        cv2.rectangle(ref, (startX, startY), (endX, endY), (0, 255, 0), 2)
        cv2.putText(ref, "Hodling SkrewDriver", (startX, startY), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 255, 0), 4)
        #print (startX, startY), (endX, endY)
    show(ref)
    return ref, pick
开发者ID:KentChun33333,项目名称:VistinoEventDes,代码行数:29,代码来源:testing_scrip_0801.py

示例3: main

def main():
	args = vars(parser.parse_args())
	filename = os.path.join(os.getcwd(), args["image"][0])

	image = skimage.img_as_uint(color.rgb2gray(io.imread(filename)))

	subsample = 1

	if (not args["subsample"] == 1):
		subsample = args["subsample"][0]

		image = transform.downscale_local_mean(image, (subsample, subsample))
		image = transform.pyramid_expand(image, subsample, 0, 0)

	image = exposure.rescale_intensity(image, out_range=(0,args["depth"][0]))

	if (args["visualize"]):
		io.imshow(image)
		io.show()

	source = generate_face(image, subsample, args["depth"][0], FLICKER_SPEED)

	if source:
		with open(args["output"][0], 'w') as file_:
			file_.write(source)
	else:
		print "Attempted to generate source code, failed."
开发者ID:kctess5,项目名称:sad_robot,代码行数:27,代码来源:main.py

示例4: recog_show

 def recog_show(self, img):
     hand_5 = cv2.CascadeClassifier(self.xmlPath)
     ref = img.copy()
     hand5 = hand_5.detectMultiScale(
         ref.copy()[50:550,50:800],
         scaleFactor=1.2,
         minNeighbors=15, #35 ==> 1
         #flags = cv2.cv.CV_HAAR_SCALE_IMAGE
         )
     hand = []
     hand_roi=[]
     for (x,y,w,h) in hand5:
     # Position Aware + Size Aware
         if (x < 160 and y < 160) or y<160 or h<90:
             pass
         else:
         # draw rectangle at the specific location
             cv2.rectangle(ref,(x+50,y+50),(x+50+w,y+50+h),(255,0,0),2) 
             cv2.putText(ref, "Hand", (x+50,y+50), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 0, 0), 4)
             hand.append([(x+50+x+50+w)/2,(y+50+h+y+50)/2])
     #show(ref)
             print ((x+50,y+50),(x+50+w,y+50+h))
             hand_roi.append([x+50,y+50,x+50+w,y+50+h])
     if len(hand_roi)>1:
         result_box = max(hand_roi)
     elif len(hand_roi)==1:
         result_box = hand_roi.pop()
     else:
         result_box = 0
     show(ref)
开发者ID:KentChun33333,项目名称:VistinoEventDes,代码行数:30,代码来源:testing_script_0802_multi-detect.py

示例5: color_slicing

def color_slicing():
    # 彩色分层
    image=io.imread('trafficlight.png')
    segred=image.copy()
    seggreen=image.copy()
    segyellow=image.copy()
    maskred=(image[:,:,0]>100) & (image[:,:,1]<50 ) & (image[:,:,2]<50)
    maskgreen=(image[:,:,0]<100) & (image[:,:,1]>100 ) & (image[:,:,2]<100)
    maskyellow=(image[:,:,0]>100) & (image[:,:,1]>100 ) & (image[:,:,2]<70)
    segred[:,:,0]*=maskred
    segred[:,:,1]*=maskred
    segred[:,:,2]*=maskred
    io.imshow(segred)
    io.imsave('lightred.png',segred)
    io.show()
    seggreen[:,:,0]*=maskgreen
    seggreen[:,:,1]*=maskgreen
    seggreen[:,:,2]*=maskgreen
    io.imshow(seggreen)
    io.imsave('lightgreen.png',seggreen)
    io.show()
    segyellow[:,:,0]*=maskyellow
    segyellow[:,:,1]*=maskyellow
    segyellow[:,:,2]*=maskyellow
    io.imshow(segyellow)
    io.imsave('lightyellow.png',segyellow)
开发者ID:xingnix,项目名称:learning,代码行数:26,代码来源:colorimage.py

示例6: test_with_hc_v2

def test_with_hc_v2(frame_id,pro,falsePositive=False,falseNegative=False):
    ''' Use this fuc when ### above are first implement'''
    img = vid.get_data(frame_id)
    img = auto_resized(img,conf['train_resolution'])
    img_gray = cv2.cvtColor( img , cv2.COLOR_BGR2GRAY)
    roi = img_gray[20:180,35:345]
    (boxes, probs) = od.detect(roi, winStep=conf["step_size"], winDim=conf["sliding_size"],
    pyramidScale=1.1, minProb=pro)
    # since for size effect with the camera, pyramidScale = 1.001, mnust>1, 
    # if positive size would change, we have to use 1.5 or 2 ...etc 
    pick = non_max_suppression(np.array(boxes), probs, conf["overlap_thresh"])
    orig = img.copy()
    # loop over the allowed bounding boxes and draw them
    for (startX, startY, endX, endY) in pick:
        if startY < 50 and startX < 50:
            pass
        else : 
            cv2.rectangle(orig, (startX+35, startY+20), (endX+35, endY+20), (0, 255, 0), 2)
        print (startX+35, startY+20), (endX+35, endY+20)
        ###
        ##
        ###
        if falsePositive == True:
            hard_neg_extrect(conf,)
    show(orig)

    return img_gray, orig
开发者ID:KentChun33333,项目名称:VistinoEventDes,代码行数:27,代码来源:test_detect_hard_mining.py

示例7: test_with_hc_222

def test_with_hc_222(frame_id,pro):
    ''' Use this fuc when ### above are first implement'''
    img = vid.get_data(frame_id)
    img = auto_resized(img,conf['train_resolution'])
    # ROI roi
    roi = img[20:180,35:345]
    # use check_hsv
    img_gray = check_hsv(roi)
    (boxes, probs) = od.detect(img_gray, winStep=conf["step_size"], winDim=conf["sliding_size"],
    pyramidScale=1.1, minProb=pro)
    # since for size effect with the camera, pyramidScale = 1.001, mnust>1, 
    # if positive size would change, we have to use 1.5 or 2 ...etc 
    pick = non_max_suppression(np.array(boxes), probs, conf["overlap_thresh"])
    orig = img.copy()
    # loop over the allowed bounding boxes and draw them
    for (startX, startY, endX, endY) in pick:
        if startY < 50 and startX < 50:
            pass
        elif abs(startX - endX)>80: # Size effect
            pass
        elif (check_hsv2(img)[startY+20:endY+20,startX+35:endX+35]).sum()<255*300:
            # White region = 255
            print (startX, startY, endX, endY)
            print '[*] White Value Index must > 20'
            print (check_hsv2(img)[startY+20:endY+20,startX+35:endX+35]).sum()
            print '[*] End'
        else: 
            cv2.rectangle(orig, (startX+35, startY+20), (endX+35, endY+20), (0, 255, 0), 2)
    show(orig)
    return img_gray, orig
开发者ID:KentChun33333,项目名称:VistinoEventDes,代码行数:30,代码来源:test_detect_hard_mining.py

示例8: test_with_pro_depth_size

def test_with_pro_depth_size(rawImg,pro):
    ''' Use this fuc when ### above are first implement'''
    #img = vid.get_data(frame_id)
    roi = auto_resized(rawImg,conf['train_resolution'])
    (boxes, probs) = od.detect(roi, winStep=conf["step_size"], winDim=conf["sliding_size"],
    pyramidScale=1.1, minProb=pro)
    # since for size effect with the camera, pyramidScale = 1.001, mnust>1, 
    # if positive size would change, we have to use 1.5 or 2 ...etc 
    pick = non_max_suppression(np.array(boxes), probs, conf["overlap_thresh"])
    orig = roi.copy()
    # loop over the allowed bounding boxes and draw them
    hand_roi=[]
    for (startX, startY, endX, endY) in pick:
        if endX-startX>30:
            pass
        else:
            cv2.rectangle(orig, (startX, startY), (endX, endY), (0, 255, 0), 2)
            print (startX, startY), (endX, endY)
            hand_roi.append([startX, startY, endX, endY])
    show(orig)

    ###############
    if len(hand_roi)>1:
        result_box = max(hand_roi)
    elif len(hand_roi)==1:
        result_box = hand_roi.pop()
    else:
        result_box = 0
    #####
    return orig, result_box
开发者ID:KentChun33333,项目名称:VistinoEventDes,代码行数:30,代码来源:testing_scrip_0608.py

示例9: test_with_pro_depth_iter

def test_with_pro_depth_iter(rawImg,pro):
    ''' Use this fuc when ### above are first implement'''
    #img = vid.get_data(frame_id)
    roi = auto_resized(rawImg,conf['train_resolution'])
    def memo(proThresh):
        (boxes, probs) = od.detect(roi, winStep=conf["step_size"], winDim=conf["sliding_size"],
        pyramidScale=1.1, minProb=proThresh)
        # since for size effect with the camera, pyramidScale = 1.001, mnust>1, 
        # if positive size would change, we have to use 1.5 or 2 ...etc 
        pick = non_max_suppression(np.array(boxes), probs, conf["overlap_thresh"])
        if pick>1:
            proThresh+=0.01
            memo(proThresh)
        elif pick ==0:
            proThresh-=0.01
            memo(proThresh)
        else:
            return pick
    pick = memo(0.5)
    orig = img.copy()
    # loop over the allowed bounding boxes and draw them
    for (startX, startY, endX, endY) in pick:
        cv2.rectangle(orig, (startX+35, startY+20), (endX+35, endY+20), (0, 255, 0), 2)
        print (startX+35, startY+20), (endX+35, endY+20)
    show(orig)
    return roi, orig
开发者ID:KentChun33333,项目名称:VistinoEventDes,代码行数:26,代码来源:testing_scrip_0605.py

示例10: _detect_spots_hough_circle

def _detect_spots_hough_circle(image, radius):
	edges = canny(image)
	imshow(edges)
	show()
	hough_radii = np.arange(radius/2, radius*2, 10)
	hough_circles = hough_circle(edges, hough_radii)
	
	print(hough_circles)
开发者ID:afrutig,项目名称:Moloreader,代码行数:8,代码来源:detection.py

示例11: main

def main():
    from skimage import data, io, filters
    testfolder='/Users/davidgreenfield/Downloads/pics_boots/'
    testimage='B00A0GVP8A.jpg'
    image = io.imread(testfolder+testimage,flatten=True) # or any NumPy array!
    edges = filters.sobel(image)
    io.imshow(edges)
    io.show()
开发者ID:dgreenfi,项目名称:ImageRec,代码行数:8,代码来源:image_tests.py

示例12: main

def main(sc, outputDir, outputIndices, filename, onThreshold, speciesToBin, skipTime, interactive):
    
    global globalSpeciesToBin, globalSkipTime, globalOnThreshold
    
    # Broadcast the global variables.
    globalSpeciesToBin=sc.broadcast(speciesToBin)
    globalSkipTime=sc.broadcast(skipTime)
    globalOnThreshold = sc.broadcast(onThreshold)
    
    # Load the records from the sfile.
    allRecords = sc.newAPIHadoopFile(filename, "robertslab.hadoop.io.SFileInputFormat", "robertslab.hadoop.io.SFileHeader", "robertslab.hadoop.io.SFileRecord", keyConverter="robertslab.spark.sfile.SFileHeaderToPythonConverter", valueConverter="robertslab.spark.sfile.SFileRecordToPythonConverter")

    # Bin the species counts records and sum across all of the bins.
    # results = allRecords.filter(filterSpeciesCounts).map(binSpeciesCounts).values().reduce(addBins)
    results = allRecords.filter(filterSpeciesCounts).map(storeEvent).values().reduce(addBins)
    results[0].sort()
    # print("results = " + str(results))

    #.reduceByKey(addLatticeBins).values().collect()

    # Save the on events in a file in pickle format.
    pickle.dump(results, open("analysis/pdf.dat/onEvent_gradient_sp2.p", "wb"))

    # Save the pdfs into a .mat file in the output directory named according to the output indices.
    # pdfs=np.zeros((len(speciesToBin),),dtype=object)
    # for i in range(0,len(speciesToBin)):
    #     minCount=results[i][0]
    #     maxCount=results[i][1]
    #     bins=results[i][2]
    #     pdf = np.zeros((len(bins),2),dtype=float)
    #     pdf[:,0]=np.arange(minCount,maxCount+1).astype(float)
    #     pdf[:,1]=bins.astype(float)/float(sum(bins))
    #     pdfs[i] = pdf
    #     print("Binned species %d: %d data points from %d to %d into %s"%(speciesToBin[i],sum(bins),minCount,maxCount,outputDir))
    # cellio.cellsave(outputDir,pdfs,outputIndices);
    # cellio.cellsave(outputDir,results,outputIndices);

    # If interactive, show the pdf.
    if interactive:
        for repidx in range(len(results[0])):
            replicate = results[0][repidx][0]
            times=[]
            event=[]
            for val in results[0][repidx][1:]:
                times.append(val[0])
                event.append(val[1])
            print("times = " + str(times))
            print("event = " + str(event))
            plt.figure()
            plt.subplot(1,1,1)
            plt.plot(times,event)
            plt.axis([0, times[-1], -1, 2])
            plt.xlabel('time')
            plt.ylabel('event')
            plt.title('replicate = %s'%(replicate))
            io.show()
    else:
        print "Warning: cannot plot PDF with only a single bin."
开发者ID:ratisharma,项目名称:LatticeMicrobes,代码行数:58,代码来源:sp_calc_lm_onEvents2.py

示例13: color_transformation

def color_transformation():
    # 彩色变换
    image=data.coffee()
    brighter=np.uint8(image*0.5+255*0.5)
    darker=np.uint8(image*0.5)
    io.imshow(brighter)
    io.show()
    io.imshow(darker)
    io.show()
开发者ID:xingnix,项目名称:learning,代码行数:9,代码来源:colorimage.py

示例14: main

def main(argv):
  filename = argv[1]
  img = io.imread(filename, as_grey=True)
  lpyra = tuple(transform.pyramid_laplacian(img))
  l = lpyra[0]
  l = exposure.equalize_hist(l)
  y, x = np.indices((l.shape[0],l.shape[1]))
  vect = np.array(zip(y.reshape(y.size),x.reshape(x.size),l.reshape(l.size)))
  io.imshow(l)
  io.show()
开发者ID:moritayasuaki,项目名称:pycv,代码行数:10,代码来源:mark2.py

示例15: test1

def test1():
    data, key = load_h5(ROOT + os.sep + 'train320.h5')
    X = data['X']
    img = np.squeeze(X[700])
    score = data['y'][700]
    img = np.swapaxes(img, 0, 2)
    img = np.swapaxes(img, 0, 1)
    skio.imshow(img)
    print score
    skio.show()
开发者ID:OleNet,项目名称:caffe-windows,代码行数:10,代码来源:load_h5data.py


注:本文中的skimage.io.show函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。