当前位置: 首页>>代码示例>>Python>>正文


Python filters.threshold_adaptive函数代码示例

本文整理汇总了Python中skimage.filters.threshold_adaptive函数的典型用法代码示例。如果您正苦于以下问题:Python threshold_adaptive函数的具体用法?Python threshold_adaptive怎么用?Python threshold_adaptive使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了threshold_adaptive函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: transform_perspective

def transform_perspective(image, board):
	ratio = image.shape[0] / 500.0
	warped = transform.four_point_transform(image, board.reshape(4, 2) * ratio)
	warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
	warped = threshold_adaptive(warped, 250, offset = 10)
	warped = warped.astype("uint8") * 255
	cv2.imwrite("scanned.png", warped)
开发者ID:josecols,项目名称:sb-ubicomp,代码行数:7,代码来源:scan.py

示例2: compute_base_mask

    def compute_base_mask(self, params):
        """Creates the base mask for the base image.
        Needs the base image, an instance of imageloaderparams
        and the clip area, which should be already defined
        by the load_base_image method
        To create the base mask, two algorithms are available, on based on the
        threshold_isodata and the other one on the threshold_adaptive functions
        of the scikit-image.threshold module.
        """
        x0, y0, x1, y1 = self.clip
        base_mask = np.copy(self.base_image[x0:x1, y0:y1])

        if params.mask_algorithm == "Isodata":
            isodata_threshold = threshold_isodata(base_mask)
            base_mask = img_as_float(base_mask <= isodata_threshold)

        elif params.mask_algorithm == "Local Average":
            # need to invert because threshold_adaptive sets dark parts to 0
            base_mask = 1.0 - threshold_adaptive(base_mask,
                                                 params.mask_blocksize,
                                                 offset=params.mask_offset)

        else:
            print "Not a valid mask algorithm"

        self.base_mask = 1 - base_mask
开发者ID:brunomsaraiva,项目名称:eHooke_1.0,代码行数:26,代码来源:images.py

示例3: processImage

    def processImage(self, fileBuffer):
        # tmp_name = uuid.uuid4().__str__() + ".png"
        try:

            image = Image.open(fileBuffer)
            image.thumbnail(self.size)
            converted = image.convert("L")
            # converted = ImageEnhance.Contrast(converted).enhance(1.1)
            # converted = ImageEnhance.Brightness(converted).enhance(1.1)
            converted = ImageEnhance.Sharpness(converted).enhance(1.4)

            # image = np.array(converted)
            image = matplotlib.image.pil_to_array(converted)
            binary_adaptive = threshold_adaptive(image, 40, offset=10)

            figsize = [x / float(self._dpi) for x in (binary_adaptive.shape[1], binary_adaptive.shape[0])]
            fig = Figure(figsize=figsize, dpi=self._dpi, frameon=False)
            canvas = FigureCanvasAgg(fig)
            fig.figimage(binary_adaptive)

            output = StringIO()
            fig.savefig(output, format='png')
            output.seek(0)

            self.outfiles.append(output)
        except IOError:
            self.invalidFiles.append(fileBuffer)
开发者ID:urakozz,项目名称:python-pdfer,代码行数:27,代码来源:pdfer.py

示例4: adaptive_threshold_mask

def adaptive_threshold_mask(frame):
    """
    adaptive thresholding with boolean output
    """
    block_size = 15
    frame = filters.threshold_adaptive(grayscale(frame), block_size=block_size)
    return frame
开发者ID:grayhem,项目名称:inspection_port,代码行数:7,代码来源:primitives.py

示例5: get_symbols

def get_symbols(image):
  dil_eros = bin_search(dilatation_cross_numb, [image], (1, 16), 1.0, "dec")
  block_size = 50
  binary_adaptive_image = erosion(dilation(threshold_adaptive(
    array(image.convert("L")), block_size, offset=10),
      square(dil_eros)), square(dil_eros))

  all_labels = label(binary_adaptive_image, background = True)
  objects = find_objects(all_labels)

  av_width = av_height = 0
  symbols = []

  for obj in objects:
    symb = (binary_adaptive_image[obj], (obj[0].start, obj[1].start))
    symbols.append(symb)
    av_height += symb[0].shape[0]
    av_width += symb[0].shape[1]

  av_width /= float(len(objects))
  av_height /= float(len(objects))

  symbols = [symb for symb in symbols
    if symb[0].shape[0] >= av_height and symb[0].shape[1] >= av_width]

  return symbols
开发者ID:FromZeus,项目名称:new_diplom_work,代码行数:26,代码来源:neuro_tools.py

示例6: adaptive_threshold

def adaptive_threshold(frame):
    """
    apply adaptive thresholding. grayscale output.
    """
    block_size = 7
    frame = filters.threshold_adaptive(grayscale(frame), block_size=block_size)
    return frame.astype(np.uint8)*255
开发者ID:grayhem,项目名称:inspection_port,代码行数:7,代码来源:primitives.py

示例7: segment

    def segment(self, image):
        """
        """
        # image = src[:]
        if self.use_adaptive_threshold:
            bs = self.blocksize
            if not bs % 2:
                bs += 1

            markers = threshold_adaptive(image, bs)

            # n = markers[:].astype('uint8')
            n = markers.astype('uint8')
            # n[markers] = 255
            # n[invert(markers)] = 1
            # markers = n
            return n
        else:
            markers = zeros_like(image)
            # print('image',image.max(), image.min())
            # print('le', image<self.threshold_low)
            # print('ge', image>self.threshold_high)
            markers[image <= self.threshold_low] = 1
            markers[image > self.threshold_high] = 255

        #elmap = sobel(image, mask=image)
        elmap = canny(image, sigma=1)
        wsrc = watershed(elmap, markers, mask=image)

        return invert(wsrc)
开发者ID:NMGRL,项目名称:pychron,代码行数:30,代码来源:region.py

示例8: make_prediction

def make_prediction():
    import sys
    import numpy as np
    import pandas as pd

    from skimage.data import imread
    from skimage.filters import threshold_adaptive
    from skimage.restoration import denoise_tv_bregman

    from sklearn.cross_validation import train_test_split
    from sklearn.grid_search import GridSearchCV

    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier

    from model_design import model_design
    classifier = model_design()

    X, IDs = [], range(6284, 12504)
    for ID in IDs:
        original = imread('../data/testResized/' + str(ID) +'.Bmp', as_grey=True)
        denoised = denoise_tv_bregman(original, 3)
        binarilized = threshold_adaptive(denoised, block_size=13, method='gaussian')
        feature = binarilized.reshape(1,400)[0]
        X.append(feature)
    X = np.array(X)

    y = classifier.predict(X)
    result = pd.DataFrame({'Id': IDs, 'Class': y})
    result.to_csv('../result/06-09-2015_AdaBoostXTC.csv', sep=',', index=None, columns=['Id', 'Class'])
开发者ID:pigeatshit,项目名称:Kaggle,代码行数:30,代码来源:make_prediction.py

示例9: intensity_object_features

def intensity_object_features(im, adaptive_t_radius=51, sample_size=None):
    """Segment objects based on intensity threshold and compute properties.

    Parameters
    ----------
    im : 2D np.ndarray of float or uint8.
        The input image.
    adaptive_t_radius : int, optional
        The radius to calculate background with adaptive threshold.
    sample_size : int, optional
        Sample this many objects randomly, rather than measuring all
        objects.

    Returns
    -------
    f : 1D np.ndarray of float
        The feature vector.
    names : list of string
        The list of feature names.
    """
    tim1 = im > imfilter.threshold_otsu(im)
    f1, names1 = object_features(tim1, im, sample_size=sample_size)
    names1 = ['otsu-threshold-' + name for name in names1]
    tim2 = imfilter.threshold_adaptive(im, adaptive_t_radius)
    f2, names2 = object_features(tim2, im, sample_size=sample_size)
    names2 = ['adaptive-threshold-' + name for name in names2]
    f = np.concatenate([f1, f2])
    return f, names1 + names2
开发者ID:koenvb,项目名称:microscopium,代码行数:28,代码来源:features.py

示例10: text_segments

def text_segments(img, min_h=20, max_h=50):
    gray_scale_img = rgb2grayscale(img)

    binarized_adaptive_img = threshold_adaptive(gray_scale_img, block_size=40, offset=20)
    dilated = dilation(~binarized_adaptive_img, rectangle(1, 15))
    for segment in extract_segments(dilated.copy()):
        if min_h < height(segment) < max_h:
            yield segment
开发者ID:sdanaipat,项目名称:Reverse-Engineer-Evernote-Camera,代码行数:8,代码来源:segmentation.py

示例11: get_nuclei

def get_nuclei(img, opening_radius=6, block_size=80, threshold_offset=0):
    s = Sample(DOWNSAMPLE)
    binary = threshold_adaptive(s.downsample(img), int(block_size / s.rate), offset=threshold_offset)
    filled = fill_holes(binary)
    opened = opening(filled, selem=disk(opening_radius / s.rate))
    nuclei = apply_watershed(opened)
    nuclei = s.upsample(nuclei)
    return img_as_uint(nuclei)
开发者ID:feldman4,项目名称:lasagna,代码行数:8,代码来源:process.py

示例12: cut

	def cut(image):
		V = cv2.split(cv2.cvtColor(image, cv2.COLOR_BGR2HSV))[2]
		thresh = threshold_adaptive(V, 29, offset=15).astype("uint8") * 255
		thresh = cv2.bitwise_not(thresh)

		# perform a connected components analysis and initialize the mask to store the locations
		# of the character candidates
		labels = measure.label(thresh, neighbors=8, background=0)

		boxes = []

		# loop over the unique components
		for label in np.unique(labels):
			# if this is the background label, ignore it
			if label == 0:
				continue

			# otherwise, construct the label mask to display only connected components for the
			# current label, then find contours in the label mask
			labelMask = np.zeros(thresh.shape, dtype="uint8")
			labelMask[labels == label] = 255
			(_, cnts, _) = cv2.findContours(labelMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

			# ensure at least one contour was found in the mask

			if len(cnts) > 0:
				# grab the largest contour which corresponds to the component in the mask, then
				# grab the bounding box for the contour
				c = max(cnts, key=cv2.contourArea)
				(boxX, boxY, boxW, boxH) = cv2.boundingRect(c)

				# compute the aspect ratio, solidity, and height ratio for the component
				aspectRatio = boxW / float(boxH)
				solidity = cv2.contourArea(c) / float(boxW * boxH)
				heightRatio = boxH / float(thresh.shape[0])

				# determine if the aspect ratio, solidity, and height of the contour pass
				# the rules tests
				keepAspectRatio = aspectRatio < 1.0
				keepSolidity = solidity > 0.15
				keepHeight = heightRatio > 0.4 and heightRatio < 0.95

				# check to see if the component passes all the tests
				if keepAspectRatio and keepSolidity and keepHeight:
					# compute the convex hull of the contour and draw it on the character
					# candidates mask
					# hull = cv2.convexHull(c)
					# cv2.drawContours(charCandidates, [hull], -1, 255, -1)
					#
					dX = min(35, 35 - boxW) // 2
					boxX -= dX
					boxW += (dX * 2)
					boxes.append((boxX, boxY, boxX + boxW, boxY + boxH))

		# sort the bounding boxes from left to right
		boxes = sorted(boxes, key=lambda b: b[0])

		return boxes, thresh
开发者ID:clavicule,项目名称:periscope,代码行数:58,代码来源:scissors.py

示例13: fixedThresholding

def fixedThresholding(img, threshold):
    #func = lambda x: 0 if x>threshold else 255
    def func(x):
        if x > threshold:
            return 0
        else:
            return 255
            
    return filters.threshold_adaptive(img, 1, 'generic', param=func)
开发者ID:dengkunli,项目名称:Dithering,代码行数:9,代码来源:threshold.py

示例14: predict_data

def predict_data():
    X, IDs = [], range(6284, 12504)
    for ID in IDs:
        original = imread('../data/testResized/' + str(ID) +'.Bmp', as_grey=True)
        denoised = denoise_tv_bregman(original, 3)
        binarilized = threshold_adaptive(denoised, block_size=13, method='gaussian')
        feature = binarilized.reshape(1,400)[0]
        X.append(feature)
    X = np.array(X)
    return X
开发者ID:pigeatshit,项目名称:Kaggle,代码行数:10,代码来源:stacking.py

示例15: image_to_scan_bird_style_view

def image_to_scan_bird_style_view(image, screenCnt, ratio):
    # apply the four point transform to obtain a top-down
    # view of the original image
    warped = four_point_transform(image, screenCnt.reshape(4, 2) * ratio)
    # convert the warped image to grayscale, then threshold it
    # to give it that 'black and white' paper effect
    warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
    warped = threshold_adaptive(warped, 250, offset=10)
    warped = warped.astype("uint8") * 255
    return warped
开发者ID:marekrydlewski,项目名称:morse-code-reader,代码行数:10,代码来源:scan.py


注:本文中的skimage.filters.threshold_adaptive函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。