当前位置: 首页>>代码示例>>Python>>正文


Python filters.gaussian函数代码示例

本文整理汇总了Python中skimage.filters.gaussian函数的典型用法代码示例。如果您正苦于以下问题:Python gaussian函数的具体用法?Python gaussian怎么用?Python gaussian使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了gaussian函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_apply_parallel

def test_apply_parallel():
    import dask.array as da

    # data
    a = np.arange(144).reshape(12, 12).astype(float)

    # apply the filter
    expected1 = threshold_local(a, 3)
    result1 = apply_parallel(threshold_local, a, chunks=(6, 6), depth=5,
                             extra_arguments=(3,),
                             extra_keywords={'mode': 'reflect'})

    assert_array_almost_equal(result1, expected1)

    def wrapped_gauss(arr):
        return gaussian(arr, 1, mode='reflect')

    expected2 = gaussian(a, 1, mode='reflect')
    result2 = apply_parallel(wrapped_gauss, a, chunks=(6, 6), depth=5)

    assert_array_almost_equal(result2, expected2)

    expected3 = gaussian(a, 1, mode='reflect')
    result3 = apply_parallel(
        wrapped_gauss, da.from_array(a, chunks=(6, 6)), depth=5, compute=True
    )

    assert isinstance(result3, np.ndarray)
    assert_array_almost_equal(result3, expected3)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:29,代码来源:test_apply_parallel.py

示例2: filter

def filter(data,filtType,par):

    if   filtType == "sobel":       filt_data = sobel(data)
    elif filtType == "roberts":     filt_data = roberts(data)
    elif filtType == "canny":       filt_data = canny(data)
    elif filtType == "lowpass_avg":
        from scipy import ndimage
        p=int(par)
        kernel = np.ones((p,p),np.float32)/(p*p)
        filt_data = ndimage.convolve(data, kernel)
    elif filtType == "highpass_avg":
        from scipy import ndimage
        p=int(par)
        kernel = np.ones((p,p),np.float32)/(p*p)
        lp_data = ndimage.convolve(data, kernel)
        filt_data = data - lp_data
    elif filtType == "lowpass_gaussian":
        filt_data = gaussian(data, sigma=float(par))
    elif filtType == "highpass_gaussian":
        lp_data   = gaussian(data, sigma=float(par))
        filt_data = data - lp_data

    #elif filtType ==  "gradient":
       
    return filt_data
开发者ID:yunjunz,项目名称:PySAR,代码行数:25,代码来源:filter_spatial.py

示例3: correct_drift

 def correct_drift(self, ref, threshold=0.005):
     """Align images to correct for image drift.
     Detects common features on the images and tracks them moving.
     
     Parameters
     ----------
     ref: KerrArray or ndarray
         reference image with zero drift
     threshold: float
         threshold for detecting imperfections in images 
         (see skimage.feature.corner_fast for details)
     
     Returns
     -------
     shift: array
         shift vector relative to ref (x drift, y drift)
     transim: KerrArray
         copy of self translated to account for drift"""
     refed=ref.clone
     refed=filters.gaussian(ref,sigma=1)
     refed=feature.corner_fast(refed,threshold=0.005)
     imed=self.clone
     imed=filters.gaussian(imed,sigma=1)
     imco=feature.corner_fast(imed,threshold=0.005)
     shift,err,phase=feature.register_translation(refed,imco,upsample_factor=50)
     #tform = SimilarityTransform(translation=(-shift[1],-shift[0]))
     #imed = transform.warp(im, tform) #back to original image
     self=self.translate(translation=(-shift[1],-shift[0]))
     return [shift,self]   
开发者ID:gb119,项目名称:kermit,代码行数:29,代码来源:kermitv1.py

示例4: punch

def punch(img):
    # Identifiying the Tissue punches in order to Crop the image correctly
    # Canny edges and RANSAC is used to fit a circe to the punch
    # A Mask is created

    distance = 0
    r = 0

    float_im, orig, ihc = create_bin(img)
    gray = rgb2grey(orig)
    smooth = gaussian(gray, sigma=3)

    shape = np.shape(gray)
    l = shape[0]
    w = shape[1]

    x = l - 20
    y = w - 20

    rows = np.array([[x, x, x], [x + 1, x + 1, x + 1]])
    columns = np.array([[y, y, y], [y + 1, y + 1, y + 1]])

    corner = gray[rows, columns]

    thresh = np.mean(corner)
    print thresh
    binar = (smooth < thresh - 0.01)

    bin = remove_small_holes(binar, min_size=100000, connectivity=2)
    bin1 = remove_small_objects(bin, min_size=5000, connectivity=2)
    bin2 = gaussian(bin1, sigma=3)
    bin3 = (bin2 > 0)

    # eosin = IHC[:, :, 2]
    edges = canny(bin3)
    coords = np.column_stack(np.nonzero(edges))

    model, inliers = ransac(coords, CircleModel, min_samples=4, residual_threshold=1, max_trials=1000)

    # rr, cc = circle_perimeter(int(model.params[0]),
    #                          int(model.params[1]),
    #                          int(model.params[2]),
    #                          shape=im.shape)

    a, b = model.params[0], model.params[1]
    r = model.params[2]
    ny, nx = bin3.shape
    ix, iy = np.meshgrid(np.arange(nx), np.arange(ny))
    distance = np.sqrt((ix - b)**2 + (iy - a)**2)

    mask = np.ma.masked_where(distance > r, bin3)

    return distance, r, float_im, orig, ihc, bin3
开发者ID:AidanRoss,项目名称:histology,代码行数:53,代码来源:ihc_analysis.py

示例5: get_h1

def get_h1(imgs):
    ff = fftn(imgs)
    h1 = np.absolute(ifftn(ff[1, :, :]))
    scale = np.max(h1)
    # h1 = scale * gaussian_filter(h1 / scale, 5)
    h1 = scale * gaussian(h1 / scale, 5)
    return h1
开发者ID:m12sl,项目名称:dsb2-keras,代码行数:7,代码来源:fourier.py

示例6: run

def run(args):
    probs_map = np.load(args.probs_map_path)
    X, Y = probs_map.shape
    resolution = pow(2, args.level)

    if args.sigma > 0:
        probs_map = filters.gaussian(probs_map, sigma=args.sigma)

    outfile = open(args.coord_path, 'w')
    while np.max(probs_map) > args.prob_thred:
        prob_max = probs_map.max()
        max_idx = np.where(probs_map == prob_max)
        x_mask, y_mask = max_idx[0][0], max_idx[1][0]
        x_wsi = int((x_mask + 0.5) * resolution)
        y_wsi = int((y_mask + 0.5) * resolution)
        outfile.write('{:0.5f},{},{}'.format(prob_max, x_wsi, y_wsi) + '\n')

        x_min = x_mask - args.radius if x_mask - args.radius > 0 else 0
        x_max = x_mask + args.radius if x_mask + args.radius <= X else X
        y_min = y_mask - args.radius if y_mask - args.radius > 0 else 0
        y_max = y_mask + args.radius if y_mask + args.radius <= Y else Y

        for x in range(x_min, x_max):
            for y in range(y_min, y_max):
                probs_map[x, y] = 0

    outfile.close()
开发者ID:bootuz,项目名称:NCRF,代码行数:27,代码来源:nms.py

示例7: test_RGB

def test_RGB():
    img = gaussian(data.text(), 1)
    imgR = np.zeros((img.shape[0], img.shape[1], 3))
    imgG = np.zeros((img.shape[0], img.shape[1], 3))
    imgRGB = np.zeros((img.shape[0], img.shape[1], 3))
    imgR[:, :, 0] = img
    imgG[:, :, 1] = img
    imgRGB[:, :, :] = img[:, :, None]
    x = np.linspace(5, 424, 100)
    y = np.linspace(136, 50, 100)
    init = np.array([x, y]).T
    snake = active_contour(imgR, init, bc='fixed',
            alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1)
    refx = [5, 9, 13, 17, 21, 25, 30, 34, 38, 42]
    refy = [136, 135, 134, 133, 132, 131, 129, 128, 127, 125]
    assert_equal(np.array(snake[:10, 0], dtype=np.int32), refx)
    assert_equal(np.array(snake[:10, 1], dtype=np.int32), refy)
    snake = active_contour(imgG, init, bc='fixed',
            alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1)
    assert_equal(np.array(snake[:10, 0], dtype=np.int32), refx)
    assert_equal(np.array(snake[:10, 1], dtype=np.int32), refy)
    snake = active_contour(imgRGB, init, bc='fixed',
            alpha=0.1, beta=1.0, w_line=-5/3., w_edge=0, gamma=0.1)
    assert_equal(np.array(snake[:10, 0], dtype=np.int32), refx)
    assert_equal(np.array(snake[:10, 1], dtype=np.int32), refy)
开发者ID:TonyMou,项目名称:scikit-image,代码行数:25,代码来源:test_active_contour_model.py

示例8: _preprocess

    def _preprocess(self, frame, stretch_intensity=True, blur=1, denoise=0):
        """
            1. convert frame to grayscale
            2. remove noise from frame. increase denoise value for more noise filtering
            3. stretch contrast
        """
        if len(frame.shape) != 2:
            frm = grayspace(frame)
        else:
            frm = frame / self.pixel_depth * 255

        frm = frm.astype('uint8')

        # self.preprocessed_frame = frame
        # if denoise:
        #     frm = self._denoise(frm, weight=denoise)
        # print 'gray', frm.shape
        if blur:
            frm = gaussian(frm, blur) * 255
            frm = frm.astype('uint8')

            # frm1 = gaussian(self.preprocessed_frame, blur,
            #                 multichannel=True) * 255
            # self.preprocessed_frame = frm1.astype('uint8')

        if stretch_intensity:
            frm = rescale_intensity(frm)
            # frm = self._contrast_equalization(frm)
            # self.preprocessed_frame = self._contrast_equalization(self.preprocessed_frame)

        return frm
开发者ID:NMGRL,项目名称:pychron,代码行数:31,代码来源:locator.py

示例9: create_background

def create_background(m, shape, fstd=2, bstd=10):
    canvas = np.ones(shape) * m
    noise = np.random.randn(shape[0], shape[1]) * bstd
    noise = fi.gaussian(noise, fstd)     #low-pass filter noise
    canvas += noise
    canvas = np.round(canvas).astype(np.uint8)
    return canvas
开发者ID:tomfalainen,项目名称:neural-ctrlf,代码行数:7,代码来源:dataset_loader.py

示例10: from_points

    def from_points(cls, points, shape=(100, 100), scale=1.0, blur=1.):
        """Creates a pattern from a set of points.

        Currently only Gaussian peaks are implemented.

        Parameters
        ----------
        points : Points, array_like
            Positions and intensities of the points in the array.
        shape : Shape of the final array.
        scale : float
            Maximum extent of the points. Should be less than 1.
        blur : float
            Level of gaussian blur to apply to the pattern.

        Returns
        -------
        Pattern
            An array simulating a diffraction pattern.

        """
        if not isinstance(points, Points):
            points = Points(points)
        positions = points.to_shape(shape, scale)
        dat = np.zeros(shape)
        x, y = np.mgrid[0: shape[0], 0: shape[1]]
        pos = np.empty(x.shape + (2,))
        pos[:, :, 0] = x
        pos[:, :, 1] = y
        for position, intensity in zip(positions, points.intensities):
            dat += intensity * multivariate_normal.pdf(pos, mean=position, cov=1)
        dat = filters.gaussian(dat, sigma=blur)
        return dat.view(cls)
开发者ID:bm424,项目名称:diffraction-toybox,代码行数:33,代码来源:core.py

示例11: BlurImage

 def BlurImage(self, BlurSize):         # Convolution of image with Gaussian kernel BlurSize
     self.BlurSize = BlurSize
     self.BlurredImage = filt.gaussian(self.Image, BlurSize)
     self.ManipulatedImage = self.BlurredImage
     if "-Blurred" not in self.TitleTag:
         self.TitleTag = self.TitleTag + "-Blurred"
     self.Show()
开发者ID:laserkelvin,项目名称:Python-Ion-Imaging,代码行数:7,代码来源:ImageTools.py

示例12: limpa_imagem

def limpa_imagem(img_cinza):
    #binariza a imagem em escala de cinza
    img_bin_cinza = np.where(img_cinza < np.mean(img_cinza), 0, 255)
    
    # aplica lbp sobre a imagem em escala de cinza
    # lbp foi aplicado para evitar perda de informacao em regioes
    # proximas as regioes escuras (provaveis celulas)
    lbp_img = local_binary_pattern(img_cinza, 24, 3, method='uniform')
    
    # aplica efeito de blurring sobre a imagem resultante do lbp 
    blur_img = gaussian(lbp_img,sigma=6)    
    img_bin_blur = np.where(blur_img < np.mean(blur_img), 0, 255)
     
    # junta as duas regiões definidas pela binarizacao da imagem em escala
    # de cinza e a binarizacao do blurring    
    mascara = np.copy(img_bin_cinza)    
    for (a,b), valor in np.ndenumerate(img_bin_blur):
        if valor == 0:        
            mascara[a][b] = 0 
            
    # aplica a mascara obtida sobre a imagem original (em escala de cinza)
    # para delimitar melhor as regiões que não fornecerao informacoes (regioes
    # totalmente brancas)
    img_limpa = np.copy(img_cinza)
    for (a,b), valor in np.ndenumerate(mascara):
        if valor == 255:
            img_limpa[a][b] = 255

    return (img_limpa)
开发者ID:willianfatec,项目名称:PatchWiser,代码行数:29,代码来源:binarypattern.py

示例13: k_means_classifier

def k_means_classifier(image):
        n_clusters = 8

        # blur and take local maxima
        blur_image = gaussian(image, sigma=8)
        blur_image = ndi.maximum_filter(blur_image, size=3)

        # get texture features
        feats = local_binary_pattern(blur_image, P=40, R=5, method="uniform")
        feats_r = feats.reshape(-1, 1)

        # cluster the texture features
        km = k_means(n_clusters=n_clusters, batch_size=500)
        clus = km.fit(feats_r)

        # copy relevant attributes
        labels = clus.labels_
        clusters = clus.cluster_centers_

        # reshape label arrays
        labels = labels.reshape(blur_image.shape[0], blur_image.shape[1])

        # segment shadow
        img = blur_image.ravel()
        shadow_seg = img.copy()
        for i in range(0, n_clusters):
            # set up array of pixel indices matching cluster
            mask = np.nonzero((labels.ravel() == i) == True)[0]
            if len(mask) > 0:
                thresh = threshold_otsu(img[mask])
                shadow_seg[mask] = shadow_seg[mask] < thresh
        shadow_seg = shadow_seg.reshape(*image.shape)

        return shadow_seg
开发者ID:charlienewey,项目名称:shadow-detection-notebook,代码行数:34,代码来源:shadow.py

示例14: hsv_modulation

def hsv_modulation(lesion_image):

    img_path = os.path.join('../', lesion_image.path)

    if not os.path.exists(img_path):
        print('no image found: ', lesion_image.name)
        return []

    image = Image.open(img_path)
    mode = image.mode
    format = image.format
    height = image.height
    width = image.width

    image = array(image)

    if mode == 'RGBA':
        image = image[:,:,0:3]

    if lesion_image.source == 'DermQuest':
        image = image[0:-100, :]

    center = (int(height / 2), int(width / 2))
    image_hsv = rgb2hsv(image)

    sigma = image.size/800000
    oimage = np.copy(image)
    image = gaussian(image, sigma=sigma, multichannel=True)

    h = image_hsv[:,:,0]
    s = image_hsv[:,:,1]
    v = image_hsv[:,:,2]

    h = gaussian(h, sigma=sigma)
    p2, p98 = np.percentile(h, (2, 98))
    h = exposure.rescale_intensity(h, in_range=(p2, p98))

    s_inv_v = s * ((v * -1) + 1)
    s_inv_v_h = s * ((v * -1) + 1) * ((h * -1) + 1)

    slic_s = prep(oimage, s * 256)
    path_string = 'media/{0}.slic_s.jpeg'.format(lesion_image.name)
    media_path = path(path_string)

    imsave(media_path.abspath(), slic_s)

    return [{'name': 'foo'}, {'name': 'bar'}]
开发者ID:alexgustafson,项目名称:BATests,代码行数:47,代码来源:processing.py

示例15: preprocessing_filters

def preprocessing_filters(image,
                          blur_params=None,
                          temperature_params=None,
                          low_contrast_params=None,
                          center=True):


    """
    Meta function for preprocessing images.

    Parameters
    ----------
    image : ndarray
        input rgb image
    blur_band : int
        band of rgb to check for blur
    blur_params : dict or `None`
        parameters for `pyroots.detect_blur`
    temperature_params : dict or `None`
        parameters for `pyroots.calc_temperature_distance`
    low_contrast_params : dict or `None`
        parameters for `skimage.exposure.is_low_contrast`
    center : bool
        Take middle 25% of an image for blur detection?

    Returns
    -------
    bool - should the image be pre-processed? Must pass all criteria given.

    """

    try:
        if center is True:
            blur = detect_motion_blur(_center_image(image), **blur_params)
        else:
            blur = detect_motion_blur(image, **blur_params)
    except:
        blur = True
        if blur_params is not None:
            warn("Skipping motion blur check", UserWarning)
        pass

    try:
        bands = calc_temperature_distance(image, **temperature_params)
    except:
        bands = True
        if missing_band_params is not None:
            warn("Skipping temperature check", UserWarning)
        pass

    try:
        contrast = ~exposure.is_low_contrast(filters.gaussian(image, sigma=10, multichannel=True), **low_contrast_params)
    except:
        contrast = True
        if low_contrast_params is not None:
            warn("Skipping low contrast check", UserWarning)
        pass

    return(blur * bands * contrast)
开发者ID:pme1123,项目名称:PyRoots,代码行数:59,代码来源:preprocessing.py


注:本文中的skimage.filters.gaussian函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。