当前位置: 首页>>代码示例>>Python>>正文


Python feature.greycomatrix函数代码示例

本文整理汇总了Python中skimage.feature.greycomatrix函数的典型用法代码示例。如果您正苦于以下问题:Python greycomatrix函数的具体用法?Python greycomatrix怎么用?Python greycomatrix使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了greycomatrix函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_output_empty

 def test_output_empty(self):
     result = greycomatrix(self.image, [10], [0], 4)
     np.testing.assert_array_equal(result[:, :, 0, 0],
                                   np.zeros((4, 4), dtype=np.uint32))
     result = greycomatrix(self.image, [10], [0], 4, normed=True)
     np.testing.assert_array_equal(result[:, :, 0, 0],
                                   np.zeros((4, 4), dtype=np.uint32))
开发者ID:TheArindham,项目名称:scikit-image,代码行数:7,代码来源:test_texture.py

示例2: get_textural_features

def get_textural_features(img, isMultidirectional=False, distance=1):
    '''Extract GLCM feature vector from image
    Args:
        img: input image.

        isMultidirectional: Controls whether co-occurence should be calculated
            in other directions (ie 45 degrees, 90 degrees and 135 degrees).

        distance: Distance between pixels for co-occurence.

    Returns:
        features: if isMultidirectional=False, this is a 4 element vector of
        [dissimilarity, correlation,homogeneity, energy]. If not it is a 16
        element vector containing each of the above properties in each direction.
    '''
    if(isMultidirectional):
        img = img_as_ubyte(rgb2gray(img))
        glcm = greycomatrix(img, [distance], [0, 0.79, 1.57, 2.36], 256, symmetric=True, normed=True)
        dissimilarity_1 = greycoprops(glcm, 'dissimilarity')[0][0]
        dissimilarity_2 = greycoprops(glcm, 'dissimilarity')[0][1]
        dissimilarity_3 = greycoprops(glcm, 'dissimilarity')[0][2]
        dissimilarity_4 = greycoprops(glcm, 'dissimilarity')[0][3]
        correlation_1 = greycoprops(glcm, 'correlation')[0][0]
        correlation_2 = greycoprops(glcm, 'correlation')[0][1]
        correlation_3 = greycoprops(glcm, 'correlation')[0][2]
        correlation_4 = greycoprops(glcm, 'correlation')[0][3]
        homogeneity_1 = greycoprops(glcm, 'homogeneity')[0][0]
        homogeneity_2 = greycoprops(glcm, 'homogeneity')[0][1]
        homogeneity_3 = greycoprops(glcm, 'homogeneity')[0][2]
        homogeneity_4 = greycoprops(glcm, 'homogeneity')[0][3]
        energy_1 = greycoprops(glcm, 'energy')[0][0]
        energy_2 = greycoprops(glcm, 'energy')[0][1]
        energy_3 = greycoprops(glcm, 'energy')[0][2]
        energy_4 = greycoprops(glcm, 'energy')[0][3]
        feature = np.array([dissimilarity_1, dissimilarity_2, dissimilarity_3,\
         dissimilarity_4, correlation_1, correlation_2, correlation_3, correlation_4,\
         homogeneity_1, homogeneity_2, homogeneity_3, homogeneity_4, energy_1,\
         energy_2, energy_3, energy_4])
        return feature
    else:
        img = img_as_ubyte(rgb2gray(img))
        glcm = greycomatrix(img, [distance], [0], 256, symmetric=True, normed=True)
        dissimilarity = greycoprops(glcm, 'dissimilarity')[0][0]
        correlation = greycoprops(glcm, 'correlation')[0][0]
        homogeneity = greycoprops(glcm, 'homogeneity')[0][0]
        energy = greycoprops(glcm, 'energy')[0][0]
        feature = np.array([dissimilarity, correlation, homogeneity, energy])
        return feature
开发者ID:oduwa,项目名称:Wheat-Count,代码行数:48,代码来源:Helper.py

示例3: matriz_coocorrencia

    def matriz_coocorrencia(self):
        """

        Extraí atributos de textura baseados em matrizes de coocorrência (GLCM). São utilizadas matrizes 4x4
        nas distäncias 1 e 2 e com ângulos 0, 45 e 90.

        """

        g = feature.greycomatrix(self.imagemTonsDeCinza, [1, 2], [0, np.pi / 4, np.pi / 2], glcmNiveis,normed=True, symmetric=True)

        contrastes = feature.greycoprops(g, 'contrast').tolist()
        dissimilaridades = feature.greycoprops(g, 'dissimilarity').tolist()
        homogeneidades = feature.greycoprops(g, 'homogeneity').tolist()
        asm = feature.greycoprops(g, 'ASM').tolist()
        energias = feature.greycoprops(g, 'energy').tolist()
        correlacoes = feature.greycoprops(g, 'correlation').tolist()

        nomes = [
            'glcm_cont_1_0', 'glcm_cont_1_45', 'glcm_cont_1_90', 'glcm_cont_2_0', 'glcm_cont_2_45', 'glcm_cont_2_90',
            'glcm_diss_1_0', 'glcm_diss_1_45', 'glcm_diss_1_90', 'glcm_diss_2_0', 'glcm_diss_2_45', 'glcm_diss_2_90',
            'glcm_homo_1_0', 'glcm_homo_1_45', 'glcm_homo_1_90', 'glcm_homo_2_0', 'glcm_homo_2_45', 'glcm_homo_2_90',
            'glcm_asm_1_0', 'glcm_asm_1_45', 'glcm_asm_1_90', 'glcm_asm_2_0', 'glcm_asm_2_45', 'glcm_asm_2_90',
            'glcm_ener_1_0', 'glcm_ener_1_45', 'glcm_ener_1_90', 'glcm_ener_2_0', 'glcm_ener_2_45', 'glcm_ener_2_90',
            'glcm_corr_1_0', 'glcm_corr_1_45', 'glcm_corr_1_90', 'glcm_corr_2_0', 'glcm_corr_2_45', 'glcm_corr_2_90',

        ]
        tipos = [numerico] * len(nomes)

        valores = contrastes[0] + contrastes[1] + dissimilaridades[0] + dissimilaridades[1] + homogeneidades[0] + \
                  homogeneidades[1] + asm[0] + asm[1] + energias[0] + energias[1] + correlacoes[0] + correlacoes[1]

        return nomes, tipos, valores
开发者ID:fernandovieiraf02,项目名称:superpixel,代码行数:32,代码来源:extratores.py

示例4: GLCM

def GLCM(im):
    """Calculate the grey level co-occurrence matrices and output values for 
    contrast, dissimilarity, homogeneity, energy, correlation, and ASM in a list"""
    
    newIm = im.convert('L') #Conver to a grey scale image
    glcm = greycomatrix(newIm, [5], [0]) #calcualte the glcm  
    
    #Compute all of the grey co occurrence features. 
    contrast = greycoprops(glcm, 'contrast')[0][0]
    if numpy.isnan(contrast): #Make sure that no value is recorded as NAN. 
        contrast = 0 #if it is replace with 0. 
    dissim = greycoprops(glcm, 'dissimilarity')[0][0]
    if numpy.isnan(dissim): 
        dissim = 0
    homog = greycoprops(glcm, 'homogeneity')[0][0]
    if numpy.isnan(homog): 
        homog = 0
    energy = greycoprops(glcm, 'energy')[0][0]
    if numpy.isnan(energy): 
        energy = 0
    corr = greycoprops(glcm, 'correlation')[0][0]
    if numpy.isnan(corr): 
        corr = 0
    ASM = greycoprops(glcm, 'ASM')[0][0]
    if numpy.isnan(ASM): 
        ASM = 0
    return numpy.concatenate(([contrast], [dissim], [homog], [energy], [corr], [ASM]), 0) #concatenate into one list along axis 0 and return 
开发者ID:cassieburgess,项目名称:Flower-Classification,代码行数:27,代码来源:ImageProcess.py

示例5: glide

def glide(image, w, d, theta, levels=16, step=2):

    image = np.pad(image, int(w/2), mode='reflect')
    M, N = image.shape
    # map_homo = np.zeros((M, N))
    # map_iner = np.zeros((M, N))
    # map_clsh = np.zeros((M, N))
    map_Q1 = np.zeros((M, N))
    map_Q2 = np.zeros((M, N))
    map_Q4 = np.zeros((M, N))

    for m in xrange(0, M, step):
        print m
        for n in xrange(0, N, step):
            window = image[m:m+w, n:n+w]
            P = greycomatrix(
                window, d, theta*np.pi/180, levels,
                symmetric=True, normed=True,
            ).mean(axis=(2,3)) / float(len(d) * len(theta))
            mu = np.mean(window)
            # map_homo[m:m+step, n:n+step] = homogeneity(P)
            # map_iner[m:m+step, n:n+step] = inertia(P)
            # map_clsh[m:m+step, n:n+step] = clustershade(P)
            map_Q1[m:m+step, n:n+step] = Q1(P)
            map_Q2[m:m+step, n:n+step] = Q2(P)
            map_Q4[m:m+step, n:n+step] = Q4(P)

    # return map_homo, map_iner, map_clsh
    return map_Q1, map_Q2, map_Q4
开发者ID:PaulMag,项目名称:INF4300_project,代码行数:29,代码来源:glcm.py

示例6: test_uniform_properties

 def test_uniform_properties(self):
     im = np.ones((4, 4), dtype=np.uint8)
     result = greycomatrix(im, [1, 2, 8], [0, np.pi / 2], 4, normed=True,
                           symmetric=True)
     for prop in ['contrast', 'dissimilarity', 'homogeneity',
                  'energy', 'correlation', 'ASM']:
         greycoprops(result, prop)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:7,代码来源:test_texture.py

示例7: compute_feats

def compute_feats(image, distances, angles):
    """
    compute the texture feature by grey level co-occurrence matrices
    :param image: is just numpy array
    :param distances: List of pixel pair distance offsets
    :param angles: List of pixel pair angles in radians for the offsets
    :return: [[diss1, corr1], [diss2, corr2], [diss3, corr3], [diss4, corr4]... ] stand for dissimilarity and correlation attribute of co-occurrence matrix  by different input parameters combinations [[dis1, ang1], [dis1, ang2],[dis2, ang1],[dis2, ang2]]. So there are totally len(distances) * len(angles) pairs of return features, wrapped by pandas.Series
    """
    glcm = greycomatrix(image, distances, angles, 256, symmetric=True, normed=True)
    dissimilarities = greycoprops(glcm, 'dissimilarity').flat
    correlations = greycoprops(glcm, 'correlation').flat
    energy = greycoprops(glcm, 'energy').flat

    data = []
    label_l2 = []
    for idx, (d, c, e) in enumerate(zip(dissimilarities, correlations, energy)):
        data.append(d)
        label_l2.append(feature_name_dissimilarity.format(idx))

        data.append(c)
        label_l2.append(feature_name_correlation.format(idx))

        data.append(e)
        label_l2.append(feature_name_energy.format(idx))

    label_l1 = [feature_method_name] * len(data)
    index = pd.MultiIndex.from_tuples(list(zip(label_l1, label_l2)), names=['method', 'attr'])

    return pd.Series(data, index)
开发者ID:erdincay,项目名称:ScoreGrass,代码行数:29,代码来源:GLCM.py

示例8: GLCM_features

def GLCM_features(img):
    gray = rgb2gray(img)
    gmatr = greycomatrix(gray, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4])
    contrast = greycoprops(gmatr, 'contrast')
    correlation = greycoprops(gmatr, 'correlation')
    energy = greycoprops(gmatr, 'energy')
    homogeneity = greycoprops(gmatr, 'homogeneity')
    return [contrast, correlation, energy, homogeneity]
开发者ID:HackKPV,项目名称:GimmeEmotionData,代码行数:8,代码来源:texture_features.py

示例9: texture_prop

			def texture_prop(region,patch_size = 2):
				_mean_min = region_props[0][region]-patch_size;
				_mean_max = region_props[0][region]+patch_size;
				glcm = greycomatrix(gray_frame[_mean_min[0]:_mean_max[0],_mean_min[1]:_mean_max[1]],
							[3], [0], 256, symmetric=True, normed=True)
				_dis = greycoprops(glcm, 'dissimilarity')[0, 0];
				_cor = greycoprops(glcm, 'correlation')[0, 0];
				return (_dis,_cor);
开发者ID:sudhargk,项目名称:video-annotator,代码行数:8,代码来源:__init__.py

示例10: calc_texture

 def calc_texture(inputs):
     inputs = np.reshape(a=inputs, newshape=[ksize, ksize])
     inputs = inputs.astype(np.uint8)
     # Greycomatrix takes image, distance offset, angles (in radians), symmetric, and normed
     # http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.greycomatrix
     glcm = greycomatrix(inputs, [offset], [0], 256, symmetric=True, normed=True)
     diss = greycoprops(glcm, texture_method)[0, 0]
     return diss
开发者ID:danforthcenter,项目名称:plantcv,代码行数:8,代码来源:threshold_methods.py

示例11: get_features

def get_features(img):
    grey_m = greycomatrix(img, [5], [0, np.pi/4, np.pi/2, 3*np.pi/4], levels=256)
    # grey_props = ['contrast', 'dissimilarity', 'homogeneity', 'ASM', 'energy', 'correlation']
    grey_props = ['contrast', 'dissimilarity', 'homogeneity', 'ASM', 'energy']
    grey_feas = []
    for prop in grey_props:
        grey_fea = greycoprops(grey_m, prop)
        grey_feas.extend(list(grey_fea))
    return grey_props, grey_feas
开发者ID:brianchan1024,项目名称:cervical_img_clf,代码行数:9,代码来源:glcm_features.py

示例12: texture_moving_window

def texture_moving_window(input_band_list,window_dimension,index,quantization_factor):
    
    '''Compute the desired spectral feature from each window
    
    :param input_band_list: list of 2darrays (list of numpy arrays)
    :param window_dimension: dimension of the processing window (integer)
    :param index: string with index to compute (contrast, energy, homogeneity, correlation, dissimilarity, ASM) (string)
    :param quantization_factor: number of levels to consider (suggested 64) (integer)
    :returns:  list of 2darrays corresponding to computed index per-band (list of numpy arrays)
    :raises: AttributeError, KeyError
    
    Author: Daniele De Vecchi - Mostapha Harb
    Last modified: 19/03/2014
    '''
    
    #TODO: Please explain better what this function does. I assume it calculates GLCM derived features from a moving window.
    #TODO: Always provide full list of options in function description (e.g. which features are supported here?)
    #TODO: Output should be array. Only dissimilarity and only 3 bands? 
    
    band_list_q = linear_quantization(input_band_list,quantization_factor)
    output_list = []
    
               
    feat1 = 0.0
    
    rows,cols=input_band_list[0].shape
    output_ft_1 = np.zeros((len(input_band_list),rows,cols)).astype(np.float32)
    
    print input_band_list[0].shape
    if (rows%window_dimension)!=0:
        rows_w = rows-1
    else:
        rows_w = rows
    if (cols%window_dimension)!=0:
        cols_w = cols-1
    else:
        cols_w = cols
    print rows,cols
#
#    rows_w = 10
    for i in range(0,rows_w):
        print str(i+1)+' of '+str(rows_w)
        for j in range(0,cols_w):
            for b in range(0,len(input_band_list)):
                data_glcm_1 = band_list_q[0][i:i+window_dimension,j:j+window_dimension] #extract the data for the glcm
            
                if (i+window_dimension<rows_w) and (j+window_dimension<cols_w):
                    glcm1 = greycomatrix(data_glcm_1, [1], [0, np.pi/4, np.pi/2, np.pi*(3/4)], levels=quantization_factor, symmetric=False, normed=True)
                    feat1 = greycoprops(glcm1, index)[0][0]
                    index_row = i+1 #window moving step
                    index_col = j+1 #window moving step
                    
                    output_ft_1[b][index_row][index_col]=float(feat1) #stack to store the results for different bands
    for b in range(0,len(input_band_list)):
        output_list.append(output_ft_1[b][:][:])
    
    return output_list
开发者ID:SENSUM-project,项目名称:sensum_rs,代码行数:57,代码来源:features.py

示例13: compute

  def compute(self, image):
    glcm = feature.greycomatrix(image, self.distance, self.angle, 256,
            symmetric = True, normed = True)

    #Calculating and normalizing the histogram
    x = itemfreq(glcm.ravel())
    hist = x[:, 1]/sum(x[:, 1])

    return hist
开发者ID:kevin-george,项目名称:surface-characterization,代码行数:9,代码来源:gray_level_cooccurrence_matrix.py

示例14: get_textural_features

def get_textural_features(img):
    img = img_as_ubyte(rgb2gray(img))
    glcm = greycomatrix(img, [1], [0], 256, symmetric=True, normed=True)
    dissimilarity = greycoprops(glcm, 'dissimilarity')[0, 0]
    correlation = greycoprops(glcm, 'correlation')[0, 0]
    homogeneity = greycoprops(glcm, 'homogeneity')[0, 0]
    energy = greycoprops(glcm, 'energy')[0, 0]
    feature = np.array([dissimilarity, correlation, homogeneity, energy])
    return feature
开发者ID:oduwa,项目名称:Wheat-Count,代码行数:9,代码来源:build_classifier.py

示例15: parallel_me

def parallel_me(Z, dissim, correl, contrast, energy, mn):
    try:
       glcm = greycomatrix(Z, [5], [0], 256, symmetric=True, normed=True)
       if (greycoprops(glcm, 'dissimilarity')[0, 0] < dissim) and (greycoprops(glcm, 'correlation')[0, 0] < correl) and (greycoprops(glcm, 'contrast')[0, 0] < contrast) and (greycoprops(glcm, 'energy')[0, 0] > energy) and (np.mean(Z)<mn):
          return 1
       else:
          return 0
    except:
       return 0
开发者ID:dbuscombe-usgs,项目名称:PyHum,代码行数:9,代码来源:_pyhum_rmshadows.py


注:本文中的skimage.feature.greycomatrix函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。