本文整理汇总了Python中skimage.draw.polygon函数的典型用法代码示例。如果您正苦于以下问题:Python polygon函数的具体用法?Python polygon怎么用?Python polygon使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了polygon函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_face_mask
def get_face_mask(img,landmarks):
mask = np.zeros((img.shape[0],img.shape[1]), dtype=img.dtype)
r = landmarks[0:17,0]
c = landmarks[0:17,1]
#rr: row is y-coord, cc: col is x-coord
rr, cc = draw.polygon(r, c)
mask[cc, rr] = 255
#remove left eyes
r = landmarks[36:42,0]
c = landmarks[36:42,1]
rr, cc = draw.polygon(r, c)
mask[cc, rr] = 0
#remove right eyes
r = landmarks[42:48,0]
c = landmarks[42:48,1]
rr, cc = draw.polygon(r, c)
mask[cc, rr] = 0
#remove lips
r = landmarks[48:60,0]
c = landmarks[48:60,1]
rr, cc = draw.polygon(r, c)
mask[cc, rr] = 0
return mask
示例2: remove_eyes_and_lips_area
def remove_eyes_and_lips_area(mask,landmarks):
r = landmarks[0:17,0]
c = landmarks[0:17,1]
#rr: row is y-coord, cc: col is x-coord
rr, cc = draw.polygon(r, c)
mask[cc, rr] = 255
#remove left eyes
r = landmarks[36:42,0]
c = landmarks[36:42,1]
rr, cc = draw.polygon(r, c)
mask[cc, rr] = 0
#remove right eyes
r = landmarks[42:48,0]
c = landmarks[42:48,1]
rr, cc = draw.polygon(r, c)
mask[cc, rr] = 0
#remove lips
r = landmarks[48:60,0]
c = landmarks[48:60,1]
rr, cc = draw.polygon(r, c)
mask[cc, rr] = 0
return mask
示例3: draw_reference_frame
def draw_reference_frame(x, y, z, h, theta):
frame = np.ones((2 * y + 1, x + 1))
frame.fill(0)
red_x = np.array([0, x // 2, x, 0])
red_y = np.array([0, y, 0, 0])
rr, cc = draw.polygon(red_y, red_x)
frame[rr, cc] = 2
m = h * x // (2 * y)
white_x = np.array([m, x - m, z, m])
white_y = np.array([h, h, 0, h])
rr, cc = draw.polygon(white_y, white_x)
frame[rr, cc] = 3
cy = y
cx = x // 2 - 1
radius = cx
rr, cc = draw.circle(cy, cx, radius)
zeros = np.ones_like(frame)
zeros[rr, cc] = 0
frame[zeros == 1] = 1
c_in = np.array(frame.shape) // 2
c_out = np.array(frame.shape) // 2
transform = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
offset = c_in - c_out.dot(transform)
frame = ndimage.interpolation.affine_transform(frame, transform.T, order=0, cval=1, offset=offset).astype(int)
return frame.astype("uint8")
示例4: create_ringed_spider_mask
def create_ringed_spider_mask(im_shape, ann_out, ann_in=0, sp_width=10,
sp_angle=0):
"""
Mask out information is outside the annulus and inside the spiders (zeros).
Parameters
----------
im_shape : tuple of int
Tuple of length two with 2d array shape (Y,X).
ann_out : int
Outer radius of the annulus.
ann_in : int
Inner radius of the annulus.
sp_width : int
Width of the spider arms (3 branches).
sp_angle : int
angle of the first spider arm (on the positive horizontal axis) in
counter-clockwise sense.
Returns
-------
mask : numpy ndarray
2d array of zeros and ones.
"""
mask = np.zeros(im_shape)
s = im_shape[0]
r = s/2
theta = np.arctan2(sp_width/2, r)
t0 = np.array([theta, np.pi-theta, np.pi+theta, np.pi*2 - theta])
t1 = t0 + sp_angle/180 * np.pi
t2 = t1 + np.pi/3
t3 = t2 + np.pi/3
x1 = r * np.cos(t1) + s/2
y1 = r * np.sin(t1) + s/2
x2 = r * np.cos(t2) + s/2
y2 = r * np.sin(t2) + s/2
x3 = r * np.cos(t3) + s/2
y3 = r * np.sin(t3) + s/2
rr1, cc1 = polygon(y1, x1)
rr2, cc2 = polygon(y2, x2)
rr3, cc3 = polygon(y3, x3)
cy, cx = frame_center(mask)
rr0, cc0 = circle(cy, cx, min(ann_out, cy))
rr4, cc4 = circle(cy, cx, ann_in)
mask[rr0, cc0] = 1
mask[rr1, cc1] = 0
mask[rr2, cc2] = 0
mask[rr3, cc3] = 0
mask[rr4, cc4] = 0
return mask
示例5: output
def output(self):
"""Return the drawn line and the resulting scan.
Returns
-------
line_image : (M, N) uint8 array, same shape as image
An array of 0s with the scanned line set to 255.
If the linewidth of the line tool is greater than 1,
sets the values within the profiled polygon to 128.
scan : (P,) or (P, 3) array of int or float
The line scan values across the image.
"""
end_points = self.line_tool.end_points
line_image = np.zeros(self.image_viewer.image.shape[:2],
np.uint8)
width = self.line_tool.linewidth
if width > 1:
rp, cp = measure.profile._line_profile_coordinates(
*end_points[:, ::-1], linewidth=width)
# the points are aliased, so create a polygon using the corners
yp = np.rint(rp[[0, 0, -1, -1],[0, -1, -1, 0]]).astype(int)
xp = np.rint(cp[[0, 0, -1, -1],[0, -1, -1, 0]]).astype(int)
rp, cp = draw.polygon(yp, xp, line_image.shape)
line_image[rp, cp] = 128
(x1, y1), (x2, y2) = end_points.astype(int)
rr, cc = draw.line(y1, x1, y2, x2)
line_image[rr, cc] = 255
return line_image, self.scan_data
示例6: __init__
def __init__(self,image):
"""Extract points, compute Delaunay tessellation, compute features, and make properties
available:
image - ndimage the image data
segments - a set of N indexes of segments that still exist
vertices(N) - for each segment, the coordinates of its vertices
pixels(N) - for each segment, the coordinates of its boundary and interior pixels
neighbors(N) - for each segment, a set of indicies of neighboring segments
features(N) - for each segment, a dictionary of features"""
self.image = image
points = self.find_points()
tri = Delaunay(points)
self.segments = set()
self.vertices = {}
self.pixels = {}
self.neighbors = {}
self.features = {}
N = len(tri.vertices)
for v,n in zip(tri.vertices,range(N)):
py,px = np.rot90(points[v],3) # ccw for y,x
iy,ix = [f.astype(int) for f in polygon(py,px)] # interior
oy,ox = outline(py,px) # edges
self.segments.add(n)
self.vertices[n] = (py,px)
self.pixels[n] = (np.concatenate((iy,oy)),np.concatenate((ix,ox)))
self.neighbors[n] = set(tri.neighbors[n])
self.features[n] = self.compute_features(n)
示例7: get_indices
def get_indices(self):
"""Returns a set of points that lie inside the picked polygon."""
coo = self.get_coords()
if coo is None:
return None
y,x = coo
return polygon(x,y, self.im)
示例8: fromRadialShape
def fromRadialShape(a, r, shape):
"""
desc:
Generates an image array based on angle and radius information. The
image will be 0 for background and 1 for shape.
arguments:
a:
desc: An array with angles (radial).
type: ndarray
r:
desc: An array with radii (pixels).
type: ndarray
shape:
desc: The shape (width, height) for the resulting shape.
type: tuple
returns:
desc: An image.
type: ndarray
"""
x = shape[0]/2 + r * np.cos(a)
y = shape[1]/2 + r * np.sin(a)
rr, cc = draw.polygon(x, y)
im = np.zeros(shape)
im[rr, cc] = 1
return im
示例9: get_morph
def get_morph(im1, im2, im1_pts_array, imt2_pts_array, t):
# Get the average image
mean_pts_array = (im1_pts_array) * (1-t) + (im2_pts_array) * (t)
# Delaunay Mean
tri_mean = Delaunay(mean_pts_array)
#mean_pts_array[:,0], mean_pts_array[:,1] = mean_pts_array[:,1], mean_pts_array[:,0].copy()
mean_im = np.zeros(im1.shape).astype(float)
for tri_vert_idxs in tri_mean.simplices.copy():
vert_idx1, vert_idx2, vert_idx3 = tri_vert_idxs
im1_tri = np.array([im1_pts_array[vert_idx1], im1_pts_array[vert_idx2], im1_pts_array[vert_idx3]])
im2_tri = np.array([im2_pts_array[vert_idx1], im2_pts_array[vert_idx2], im2_pts_array[vert_idx3]])
im_mean_tri = np.array([mean_pts_array[vert_idx1], mean_pts_array[vert_idx2], mean_pts_array[vert_idx3]])
Trans1 = TriAffine(im_mean_tri, im1_tri)
Trans2 = TriAffine(im_mean_tri, im2_tri)
poly_mean_x_idxs, poly_mean_y_idxs = polygon(im_mean_tri[:,0], im_mean_tri[:,1])
poly1_x_idxs, poly1_y_idxs = Trans1.transform(poly_mean_x_idxs, poly_mean_y_idxs)
poly2_x_idxs, poly2_y_idxs = Trans2.transform(poly_mean_x_idxs, poly_mean_y_idxs)
mean_im[poly_mean_x_idxs, poly_mean_y_idxs] = im1[poly1_x_idxs, poly1_y_idxs] * (1-t) + im2[poly2_x_idxs, poly2_y_idxs] * (t)
return mean_im
示例10: tomask
def tomask(coords):
mask = np.zeros(dims)
coords = np.array(coords)
rr, cc = polygon(coords[:, 0] + 1, coords[:, 1] + 1)
mask[rr, cc] = 1
return mask
示例11: _segment_polygon
def _segment_polygon(self, image, frame, target,
dim,
cthreshold, mi, ma):
src = frame[:]
wh = get_size(src)
# make image with polygon
im = zeros(wh)
points = asarray(target.poly_points)
rr, cc = polygon(*points.T)
im[cc, rr] = 255
# do watershedding
distance = ndimage.distance_transform_edt(im)
local_maxi = feature.peak_local_max(distance, labels=im,
indices=False,
# footprint=ones((1, 1))
)
markers, ns = ndimage.label(local_maxi)
wsrc = watershed(-distance, markers,
mask=im
)
wsrc = wsrc.astype('uint8')
# self.test_image.setup_images(3, wh)
# self.test_image.set_image(distance, idx=0)
# self.test_image.set_image(wsrc, idx=1)
# self.wait()
targets = self._find_polygon_targets(wsrc)
ct = cthreshold * 0.75
target = self._test_targets(wsrc, targets, ct, mi, ma)
if not target:
values, bins = histogram(wsrc, bins=max((10, ns)))
# assume 0 is the most abundant pixel. ie the image is mostly background
values, bins = values[1:], bins[1:]
idxs = nonzero(values)[0]
'''
polygon is now segmented into multiple regions
consectutively remove a region and find targets
'''
nimage = ones_like(wsrc, dtype='uint8') * 255
nimage[wsrc == 0] = 0
for idx in idxs:
bl = bins[idx]
bu = bins[idx + 1]
nimage[((wsrc >= bl) & (wsrc <= bu))] = 0
targets = self._find_polygon_targets(nimage)
target = self._test_targets(nimage, targets, ct, mi, ma)
if target:
break
return target
示例12: poly_to_mask
def poly_to_mask(vertex_row_coords, vertex_col_coords, shape):
'''
Creates a poligon mask
'''
fill_row_coords, fill_col_coords = draw.polygon(vertex_row_coords, vertex_col_coords, shape)
mask = np.zeros(shape, dtype=np.bool)
mask[fill_row_coords, fill_col_coords] = True
return mask
示例13: assignPts2Triangles
def assignPts2Triangles(triangles_vertices):
triLabels = []
for i,triangle in enumerate(triangles_vertices):
triangle = np.array(triangle)
y = triangle[:,1:]
x = triangle[:,:1]
rr, cc = polygon(y,x)
triLabels.append([tuple(pair) for pair in np.vstack((cc,rr)).T])
return np.array(triLabels)
示例14: add_background
def add_background(self):
dis = self.lv_radius**2/self.e_h
poly = np.array((
(self.e_center[0]+self.e_h, self.e_center[1]),
(self.e_center[0]-self.e_h, self.e_center[1]),
(self.lv_center[0]-self.lv_radius, self.lv_center[1]),
(self.lv_center[0]+self.lv_radius, self.lv_center[1]),
))
self.back = d.polygon(poly[:, 0], poly[:, 1])
示例15: __init__
def __init__(self,roilist,image):
''' Construct a list of ROI masks'''
self.image = image
self.masks = []
for roi in roilist:
empty = np.zeros(image.shape, dtype=np.uint8)
rr,cc = polygon(roi[1,:],roi[0,:])
empty[rr, cc] = 1
self.masks.append(empty)