本文整理汇总了Python中skimage.data.imread函数的典型用法代码示例。如果您正苦于以下问题:Python imread函数的具体用法?Python imread怎么用?Python imread使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了imread函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: loadImage
def loadImage(path, basename='', color='rgb'):
''' Load JPEG image from file,
Returns
--------
IM : 2D or 3D array, size H x W x nColors
dtype will be float64, with each pixel in range (0,1)
'''
path = str(path)
if len(basename) > 0:
path = os.path.join(path, basename)
if color == 'gray' or color == 'grey':
IM = imread(path, as_grey=True)
assert IM.ndim == 2
else:
IM = imread(path, as_grey=False)
if not IM.ndim == 3:
raise ValueError('Color image not available.')
if IM.dtype == np.float:
MaxVal = 1.0
elif IM.dtype == np.uint8:
MaxVal = 255
else:
raise ValueError("Unrecognized dtype: %s" % (IM.dtype))
assert IM.min() >= 0.0
assert IM.max() <= MaxVal
IM = np.asarray(IM, dtype=np.float64)
if MaxVal > 1:
IM /= MaxVal
return IM
示例2: main
def main():
for file_path in glob.glob("/home/lucas/Downloads/Lucas/GSK 10uM/*.JPG"):
img = data.imread(file_path, as_grey=True)
img = transform.resize(img, [600, 600])
img_color = transform.resize(data.imread(file_path), [600, 600])
img[img >img.mean()-0.1] = 0
# io.imshow(img)
# io.show()
#
edges = canny(img)
bordas_fechadas = closing(img > 0.1, square(15)) # fechando gaps
fill_cells = ndi.binary_fill_holes(bordas_fechadas)
# io.imshow(fill_cells)
# io.show()
img_label = label(fill_cells, background=0)
n= 0
for x in regionprops(img_label):
if x.area < 2000 and x.area > 300:
n +=1
print x.area
minr, minc, maxr, maxc = x.bbox
try:
out_path_name = file_path.split("/")[-1].rstrip(".JPG")
io.imsave("out/cell_{}_pic_{}_area_{}.png".format(n, out_path_name, str(round(x.area))),img_color[minr-3: maxr+3, minc-3: maxc+3])
#io.show()
except:
pass
示例3: load
def load(pos_dir, neg_dir, hard_examples=[]):
gc.disable()
images, labels = [], []
files = listdir(pos_dir)
for i, f in enumerate(files):
if not is_image(f):
continue
if "hard_example" in f and (
hard_examples is None or not any([f.startswith(prefix) for prefix in hard_examples])
):
continue
if i > 0 and i % 1000 == 0:
print "loaded {0}/{1} positive".format(i, len(files))
images.append(data.imread(join(pos_dir, f))[:, :, :3])
labels.append(1)
files = listdir(neg_dir)
for i, f in enumerate(files):
if not is_image(f):
continue
if "hard_example" in f and (
hard_examples is None or not any([f.startswith(prefix) for prefix in hard_examples])
):
continue
if i > 0 and i % 1000 == 0:
print "loaded {0}/{1} negative".format(i, len(files))
images.append(data.imread(join(neg_dir, f))[:, :, :3])
labels.append(0)
gc.enable()
return images, labels
示例4: main
def main():
imgs = MultiImage(data_dir + '/multipage.tif')
for a, i in zip(range(0, 4), [1, 9, 7, 8]):
fig = plt.figure()
ax = fig.add_axes([-0.1, -0.1, 1.2, 1.2])
# ax.set_axis_off()
im = data.imread('samolot0' + str(i) + '.jpg', as_grey = True)
im = invert(im)
im = process(im)
out = np.ones_like(im)
io.imshow(out)
contours = measure.find_contours(im, 0.9)
for n, contour in enumerate(contours):
plt.plot(contour[:, 1], contour[:, 0], linewidth=2, color = 'white')
plt.savefig(str(a) + '.jpg', bbox_inches = 0, frameon = False)
fig = plt.figure()
grid = AxesGrid(fig, rect = (1, 1, 1), nrows_ncols = (2, 2), axes_pad = 0.1)
for i in range(0, 4):
frame = data.imread(str(i) + '.jpg')
grid[i].imshow(frame)
grid[i].set_xticks([])
grid[i].set_yticks([])
plt.savefig('na3.jpg')
示例5: process
def process():
data = {
0: 0,
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
8: 0,
}
sobel_v_image = imread('sobel_v2.jpg')
sobel_h_image = imread('sobel_h2.jpg')
canny_image = imread('canny2.jpg')
row, col = canny_image.shape
for r in xrange(row):
for c in xrange(col):
if sobel_v_image[r][c] < 0 or sobel_h_image[r][c] < 0:
print sobel_v_image[r][c], sobel_h_image[r][c]
if canny_image[r][c] != 255:
continue
interval = which_interval(sobel_v_image[r][c], sobel_h_image[r][c])
data[interval] += 1
print data
示例6: read_files
def read_files(dir, dataset):
"""
yield data_type(train? val? test?), numpy.ndarray('uint8')
"""
dir_path = os.path.join(dir,dataset)
if dataset=='train':
for(root, dirs, files) in os.walk(dir_path):
for file in files:
if not '.txt' in file:
label = file.split("_")[0]
img_filepath = os.path.join(root,file)
yield label, data.imread(img_filepath)
elif dataset=='val':
for(root, dirs, files) in os.walk(dir_path):
for file in files:
if '.txt' in file:
# this is val_annotaions.txt
f = open(os.path.join(root,file), 'r')
while 1:
line = f.readline()
if not line: break
line_seg = line.split()
img_filepath = os.path.join(root,'images',line_seg[0])
label = line_seg[1]
yield label, data.imread(img_filepath)
f.close()
示例7: main
def main():
plt.figure(figsize=(25, 24))
planes = ['samolot00.jpg', 'samolot01.jpg', 'samolot03.jpg', 'samolot04.jpg', 'samolot05.jpg','samolot07.jpg',
'samolot08.jpg', 'samolot09.jpg', 'samolot10.jpg', 'samolot11.jpg', 'samolot12.jpg', 'samolot13.jpg',
'samolot14.jpg', 'samolot15.jpg', 'samolot16.jpg', 'samolot17.jpg', 'samolot18.jpg', 'samolot20.jpg']
i = 1
for file in planes:
img = data.imread(file, as_grey=True)
img2 = data.imread(file)
ax = plt.subplot(6, 3, i)
ax.axis('off')
img **= 0.4
img = filter.canny(img, sigma=3.0)
img = morphology.dilation(img, morphology.disk(4))
img = ndimage.binary_fill_holes(img)
img = morphology.remove_small_objects(img, 1000)
contours = measure.find_contours(img, 0.8)
ax.imshow(img2, aspect='auto')
for n, contour in enumerate(contours):
ax.plot(contour[:, 1], contour[:, 0], linewidth=1.5)
center = (sum(contour[:, 1])/len(contour[:, 1]), sum(contour[:, 0])/len(contour[:, 0]))
ax.scatter(center[0], center[1], color='white')
i += 1
plt.savefig('zad2.pdf')
示例8: read_image
def read_image(name, size=None, debug=False):
""" read image and segmentation, returns RGB + alpha composite """
image = imread(name) / 255.
if image.shape[2] == 4:
alpha = image[...,3]
image = image[...,:3]
else:
segmentation_name = os.path.splitext(name)[0][:-6] + '-label.png'
segmentation = imread(segmentation_name)
alpha = np.logical_or(segmentation[...,0], segmentation[...,1]) * 1.
if size is not None:
scale_x = float(size[0]) / image.shape[1]
scale_y = float(size[1]) / image.shape[0]
scale = min(scale_x, scale_y)
if debug:
print name, size[0], size[1], image.shape[1], image.shape[0], scale, image.shape[1]*scale, image.shape[0]*scale
if scale > 1.0:
print 'Image %s smaller than requested size' % name
if scale != 1.0:
image = rescale(image, scale, order=3)
alpha = rescale(alpha, scale, order=0)
return np.dstack((image, alpha))
示例9: Comparer_image_plot
def Comparer_image_plot(NumImg):
liste1 = os.listdir("images")
for i in liste1:
if str(NumImg) in i:
ImgPolyp = i
break
liste2 = os.listdir("graph_images12")
for j in liste2:
if str(NumImg) in j:
PlotPolyp = j
break
polDia = data.imread("images\\"+ ImgPolyp)
polDia_plot = data.imread("graph_images12\\"+ PlotPolyp)
plt.subplot(1,2,1)
plt.title("Image initiale:" + ImgPolyp)
plt.imshow(polDia)
plt.subplot(1,2,2)
plt.title("Graph image apres analyse:"+ PlotPolyp)
plt.imshow(polDia_plot)
plt.show()
示例10: xformImage
def xformImage(filename, doPlot=False):
#config area
sigma=4
mean_multiplier=2
#end config area
# img_gray = misc.imread(filename, True)
img_gray = imread(filename, as_grey=True)
img_color = imread(filename)
# print(img_color.shape)
# img_gray = resize(skimage.img_as_float(img_gray), (400,400))
img_color_masked = copy.deepcopy(img_color)
# img_color_masked = resize(img_color_masked, (400,400))
# img_color_resized = resize(img_color, (200,200))
# img_color = misc.imread(filename, False)
img_gray = ndimage.gaussian_filter(img_gray, sigma=sigma)
m,n = img_gray.shape
# sx = ndimage.sobel(img_gray, axis=0, mode='constant')
# sy = ndimage.sobel(img_gray, axis=1, mode='constant')
# sob = np.hypot(sx, sy)
mask = (img_gray > img_gray.mean()*mean_multiplier).astype(np.float)
labels = morphology.label(mask)
center_label = labels[m/2, m/2]
labels[labels != center_label] = 0
labels[labels == center_label] = 1
# img_test = copy.deepcopy(img_color)
# img_test[ labels == 0, : ] = 0
# sob [ labels == 0] = 0
img_color_masked [labels == 0, :] = 0
# img_test = ndimage.gaussian_filter(img_test, 3)
if doPlot:
f, (ax_gray, ax_color, ax_sob) = plt.subplots(ncols=3)
ax_gray.imshow(img_color_masked, cmap=plt.cm.get_cmap('gray'))
ax_gray.axis('off')
# ax_sob.imshow(sob, cmap=plt.cm.get_cmap('gray'))
ax_sob.axis('off')
ax_color.imshow(img_color, cmap=plt.cm.get_cmap('gray'))
ax_color.axis('off')
plt.show()
return np.reshape(img_color_masked, -1)
示例11: load_image
def load_image(path, as_grey=False, to_float=True):
if DEBUG:
im = imread(path, as_grey)
im = (im - np.amin(im) * 1.0) / (np.amax(im) - np.amin(im))
return im
# Load image
image = imread(path, as_grey)
if to_float:
# Convert to floating point matrix
image = image.astype(np.float32)
return image
示例12: getseg
def getseg(gt_prefix, gt_ext, imname, fg_cat):
path_name, ext = os.path.splitext(imname)
gt_name = os.path.join(gt_prefix, '%s_gt.%s'%(path_name,gt_ext))
#pdb.set_trace()
seg = imread(gt_name)
seg = [seg == fg_cat]
return seg
示例13: load_scenes
def load_scenes(filename):
zipped_scenes = []
print 'Working on: ' + filename
img = data.imread('scenes/' + filename, as_grey=True)
tmp = img
tmp = filter.canny(tmp, sigma=2.0)
tmp = ndimage.binary_fill_holes(tmp)
#tmp = morphology.dilation(tmp, morphology.disk(2))
tmp = morphology.remove_small_objects(tmp, 2000)
contours = measure.find_contours(tmp, 0.8)
ymin, xmin = contours[0].min(axis=0)
ymax, xmax = contours[0].max(axis=0)
if xmax - xmin > ymax - ymin:
xdest = 1000
ydest = 670
else:
xdest = 670
ydest = 1000
src = np.array(((0, 0), (0, ydest), (xdest, ydest), (xdest, 0)))
dst = np.array(((xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)))
tform3 = tf.ProjectiveTransform()
tform3.estimate(src, dst)
warped = tf.warp(img, tform3, output_shape=(ydest, xdest))
tmp = filter.canny(warped, sigma=2.0)
tmp = morphology.dilation(tmp, morphology.disk(2))
descriptor_extractor.detect_and_extract(tmp)
obj_key = descriptor_extractor.keypoints
scen_desc = descriptor_extractor.descriptors
zipped_scenes.append([warped, scen_desc, obj_key, filename])
return zipped_scenes
示例14: pestFeatureExtraction
def pestFeatureExtraction(filename):
selem = disk(8)
image = data.imread(filename,as_grey=True)
thresh = threshold_otsu(image)
elevation_map = sobel(image)
markers = np.zeros_like(image)
if ((image<thresh).sum() > (image>thresh).sum()):
markers[image < thresh] = 1
markers[image > thresh] = 2
else:
markers[image < thresh] = 2
markers[image > thresh] = 1
segmentation = morphology.watershed(elevation_map, markers)
segmentation = dilation(segmentation-1, selem)
segmentation = ndimage.binary_fill_holes(segmentation)
segmentation = np.logical_not(segmentation)
image[segmentation]=0;
hist = np.histogram(image.ravel(),256,[0,1])
hist = list(hist[0])
hist[:] = [float(x) / (sum(hist) - hist[0]) for x in hist]
hist.pop(0)
features = np.empty( (1, len(hist)), 'float' )
a = np.array(list(hist))
f = a.astype('float')
features[0,:]=f[:]
return features
示例15: main
def main():
def shutdown(signal, widget):
exit()
signal.signal(signal.SIGINT, shutdown)
app = QtGui.QApplication(sys.argv)
timer = QtCore.QTimer()
timer.start(500)
timer.timeout.connect(lambda: None)
loaded = lh.load_files(str(DATA_PATH), filter_unfinished=False)
for l in loaded:
jpg_io = io.BytesIO(l['jpg_image'])
l['image'] = imread(jpg_io)
l['save_path'] = os.path.join(DATA_PATH, l['filename'])
if 'edited' not in l:
l['edited'] = False
dh.triangulation(
loaded,
do_triangulation=tr.triangulation,
do_import=partial(dh.import_bone, SEGMENTATION_METHODS)
)
sys.exit(app.exec_())