本文整理汇总了Python中skimage.data.checkerboard函数的典型用法代码示例。如果您正苦于以下问题:Python checkerboard函数的具体用法?Python checkerboard怎么用?Python checkerboard使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了checkerboard函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_swirl
def test_swirl():
image = img_as_float(data.checkerboard())
swirl_params = {'radius': 80, 'rotation': 0, 'order': 2, 'mode': 'reflect'}
swirled = tf.swirl(image, strength=10, **swirl_params)
unswirled = tf.swirl(swirled, strength=-10, **swirl_params)
assert np.mean(np.abs(image - unswirled)) < 0.01
示例2: test_probabilistic_hough_seed
def test_probabilistic_hough_seed():
# Load image that is likely to give a randomly varying number of lines
image = data.checkerboard()
# Use constant seed to ensure a deterministic output
lines = transform.probabilistic_hough_line(image, threshold=50,
line_length=50, line_gap=1,
seed=1234)
assert len(lines) == 65
示例3: test_swirl
def test_swirl():
image = img_as_float(data.checkerboard())
swirl_params = {'radius': 80, 'rotation': 0, 'order': 2, 'mode': 'reflect'}
with expected_warnings(['Bi-quadratic.*bug']):
swirled = tf.swirl(image, strength=10, **swirl_params)
unswirled = tf.swirl(swirled, strength=-10, **swirl_params)
assert np.mean(np.abs(image - unswirled)) < 0.01
示例4: main
def main():
"""Load image, calculate harris scores (window functions: matrix of ones, gauss)
and plot the results."""
img = data.checkerboard()
score_window = harris_ones(img, 7)
score_gauss = harris_gauss(img)
util.plot_images_grayscale(
[img, score_window, score_gauss, feature.corner_harris(img)],
["Image", "Harris-Score (ones)", "Harris-Score (gauss)", "Harris-Score (ground truth)"]
)
示例5: main
def main():
"""Apply several gaussian filters one by one and plot the results each time."""
img = data.checkerboard()
shapes = [(5, 5), (7, 7), (11, 11), (17, 17), (31, 31)]
sigmas = [0.5, 1.0, 2.0, 4.0, 8.0]
smoothed = []
for shape, sigma in zip(shapes, sigmas):
smoothed = apply_gauss(img, gaussian_kernel(shape, sigma=sigma))
ground_truth = filters.gaussian_filter(img, sigma)
util.plot_images_grayscale(
[img, smoothed, ground_truth],
["Image", "After gauss (sigma=%.1f)" % (sigma), "Ground Truth (scipy)"]
)
示例6: profile
def profile():
import time
from iib.simulation import CLContext
from skimage import io, data, transform
gs, wgs = 256, 16
# Load some test data
r = transform.resize
sigs = np.empty((gs, gs, 4), np.float32)
sigs[:, :, 0] = r(data.coins().astype(np.float32) / 255.0, (gs, gs))
sigs[:, :, 1] = r(data.camera().astype(np.float32) / 255.0, (gs, gs))
sigs[:, :, 2] = r(data.text().astype(np.float32) / 255.0, (gs, gs))
sigs[:, :, 3] = r(data.checkerboard().astype(np.float32) / 255.0, (gs, gs))
sigs[:, :, 2] = r(io.imread("../scoring/corpus/rds/turing_001.png",
as_grey=True), (gs, gs))
sigs[:, :, 3] = io.imread("../scoring/corpus/synthetic/blobs.png",
as_grey=True)
sigs = sigs.reshape(gs*gs*4)
# Set up OpenCL
ctx = cl.create_some_context(interactive=False)
queue = cl.CommandQueue(ctx)
mf = cl.mem_flags
ifmt_f = cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.FLOAT)
bufi = cl.Image(ctx, mf.READ_ONLY, ifmt_f, (gs, gs))
cl.enqueue_copy(queue, bufi, sigs, origin=(0, 0), region=(gs, gs))
clctx = CLContext(ctx, queue, ifmt_f, gs, wgs)
# Compile the kernels
feats = cl.Program(ctx, features_cl()).build()
rdctn = cl.Program(ctx, reduction.reduction_sum_cl()).build()
blur2 = cl.Program(ctx, convolution.gaussian_cl([np.sqrt(2.0)]*4)).build()
blur4 = cl.Program(ctx, convolution.gaussian_cl([np.sqrt(4.0)]*4)).build()
iters = 500
t0 = time.time()
for i in range(iters):
get_features(clctx, feats, rdctn, blur2, blur4, bufi)
print((time.time() - t0)/iters)
示例7: swirl
\phi = \mathtt{rotation}
s = \mathtt{strength}
\\theta' = \phi + s \, e^{-\\rho / r + \\theta}
where ``strength`` is a parameter for the amount of swirl, ``radius`` indicates
the swirl extent in pixels, and ``rotation`` adds a rotation angle. The
transformation of ``radius`` into :math:`r` is to ensure that the
transformation decays to :math:`\\approx 1/1000^{\mathsf{th}}` within the
specified radius.
"""
import matplotlib.pyplot as plt
from skimage import data
from skimage.transform import swirl
image = data.checkerboard()
swirled = swirl(image, rotation=0, strength=10, radius=120, order=2)
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(8, 3), sharex=True, sharey=True, subplot_kw={'adjustable':'box-forced'})
ax0.imshow(image, cmap=plt.cm.gray, interpolation='none')
ax0.axis('off')
ax1.imshow(swirled, cmap=plt.cm.gray, interpolation='none')
ax1.axis('off')
plt.show()
示例8: test_checkerboard
def test_checkerboard():
""" Test that "checkerboard" image can be loaded. """
data.checkerboard()
示例9: AffineTransform
to robustly estimate the parameter set by detecting outliers.
"""
import numpy as np
from matplotlib import pyplot as plt
from skimage import data
from skimage.feature import corner_harris, corner_subpix, corner_peaks
from skimage.transform import warp, AffineTransform
from skimage.exposure import rescale_intensity
from skimage.color import rgb2gray
from skimage.measure import ransac
# generate synthetic checkerboard image and add gradient for the later matching
checkerboard = data.checkerboard()
img_orig = np.zeros(list(checkerboard.shape) + [3])
img_orig[..., 0] = checkerboard
gradient_r, gradient_c = np.mgrid[0:img_orig.shape[0], 0:img_orig.shape[1]]
img_orig[..., 1] = gradient_r
img_orig[..., 2] = gradient_c
img_orig = rescale_intensity(img_orig)
img_orig_gray = rgb2gray(img_orig)
# warp synthetic image
tform = AffineTransform(scale=(0.9, 0.9), rotation=0.2, translation=(20, -10))
img_warped = warp(img_orig, tform.inverse, output_shape=(200, 200))
img_warped_gray = rgb2gray(img_warped)
# extract corners using Harris' corner measure
coords_orig = corner_peaks(corner_harris(img_orig_gray), threshold_rel=0.001,
示例10: test_checkerboard
def test_checkerboard():
""" Test that checkerboard image can be loaded. """
checkerboard = data.checkerboard()
示例11: img_as_float
PYWAVELET_ND_INDEXING_WARNING = None
try:
import dask
except ImportError:
DASK_NOT_INSTALLED_WARNING = 'The optional dask dependency is not installed'
else:
DASK_NOT_INSTALLED_WARNING = None
np.random.seed(1234)
astro = img_as_float(data.astronaut()[:128, :128])
astro_gray = color.rgb2gray(astro)
checkerboard_gray = img_as_float(data.checkerboard())
checkerboard = color.gray2rgb(checkerboard_gray)
def test_denoise_tv_chambolle_2d():
# astronaut image
img = astro_gray.copy()
# add noise to astronaut
img += 0.5 * img.std() * np.random.rand(*img.shape)
# clip noise so that it does not exceed allowed range for float images.
img = np.clip(img, 0, 1)
# denoise
denoised_astro = restoration.denoise_tv_chambolle(img, weight=0.1)
# which dtype?
assert_(denoised_astro.dtype in [np.float, np.float32, np.float64])
from scipy import ndimage as ndi
示例12: AffineTransform
"""
Affine transform
=================
Warping and affine transforms of images.
"""
from matplotlib import pyplot as plt
from skimage import data
from skimage.feature import corner_harris, corner_subpix, corner_peaks
from skimage.transform import warp, AffineTransform
tform = AffineTransform(scale=(1.3, 1.1), rotation=1, shear=0.7,
translation=(210, 50))
image = warp(data.checkerboard(), tform.inverse, output_shape=(350, 350))
coords = corner_peaks(corner_harris(image), min_distance=5)
coords_subpix = corner_subpix(image, coords, window_size=13)
plt.gray()
plt.imshow(image, interpolation='nearest')
plt.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15, mew=5)
plt.plot(coords[:, 1], coords[:, 0], '.b', markersize=7)
plt.axis('off')
plt.show()
示例13: img_as_float
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 21 13:10:04 2015
@author: prassanna
"""
###FILTERS AND BLURRING############
from skimage import filter,io,data,color,feature,img_as_float
from matplotlib import pyplot as plt
import numpy as np
img = img_as_float(data.checkerboard());
print img.shape
io.imshow(img)
##Gaussian
noisy = img + 0.6 * img.std() * np.random.random(img.shape)
noisy = np.clip(noisy, 0, 1)
blurred = filter.gaussian_filter(noisy, 2);
#blurred_int = np.uint8(blurred*255)
#print np.amax(blurred_int)
bla = np.vstack((img,noisy,blurred))
io.imshow(bla)
#2nd Gaussian
from math import sqrt
img_2 = data.hubble_deep_field()
img_2 = img_2 [0:500,0:500]
示例14: test
def test():
import matplotlib.pyplot as plt
from skimage import io, data, transform
from iib.simulation import CLContext
gs, wgs = 256, 16
# Load some test data
r = transform.resize
sigs = np.empty((gs, gs, 4), np.float32)
sigs[:, :, 0] = r(data.coins().astype(np.float32) / 255.0, (gs, gs))
sigs[:, :, 1] = r(data.camera().astype(np.float32) / 255.0, (gs, gs))
sigs[:, :, 2] = r(data.text().astype(np.float32) / 255.0, (gs, gs))
sigs[:, :, 3] = r(data.checkerboard().astype(np.float32) / 255.0, (gs, gs))
sigs[:, :, 2] = r(io.imread("../scoring/corpus/rds/turing_001.png",
as_grey=True), (gs, gs))
sigs[:, :, 3] = io.imread("../scoring/corpus/synthetic/blobs.png",
as_grey=True)
#sq = np.arange(256).astype(np.float32).reshape((16, 16)) / 255.0
#sigs[:, :, 0] = np.tile(sq, (16, 16))
sigs = sigs.reshape(gs*gs*4)
# Set up OpenCL
ctx = cl.create_some_context(interactive=False)
queue = cl.CommandQueue(ctx)
mf = cl.mem_flags
ifmt_f = cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.FLOAT)
bufi = cl.Image(ctx, mf.READ_ONLY, ifmt_f, (gs, gs))
cl.enqueue_copy(queue, bufi, sigs, origin=(0, 0), region=(gs, gs))
clctx = CLContext(ctx, queue, ifmt_f, gs, wgs)
# Compile the kernels
feats = cl.Program(ctx, features_cl()).build()
rdctn = cl.Program(ctx, reduction.reduction_sum_cl()).build()
blur2 = cl.Program(ctx, convolution.gaussian_cl([np.sqrt(2.0)]*4)).build()
blur4 = cl.Program(ctx, convolution.gaussian_cl([np.sqrt(4.0)]*4)).build()
entropy = get_entropy(clctx, feats, rdctn, bufi)
print("Average entropy:", entropy)
variance = get_variance(clctx, feats, rdctn, bufi)
print("Variance:", variance)
edges = get_edges(clctx, feats, rdctn, blur4, bufi, summarise=False)
edge_counts = get_edges(clctx, feats, rdctn, blur4, bufi)
print("Edge pixel counts:", edge_counts)
blobs = get_blobs(clctx, feats, rdctn, blur2, bufi, summarise=False)
features = get_features(clctx, feats, rdctn, blur2, blur4, bufi)
print("Feature vector:")
print(features)
# Plot the edges and blobs
for i in range(4):
plt.subplot(4, 3, i*3+1)
img = sigs.reshape((gs, gs, 4))[:, :, i]
plt.imshow(img, cmap="gray")
plt.xticks([])
plt.yticks([])
plt.subplot(4, 3, i*3+2)
img = edges.reshape((gs, gs, 4))[:, :, i]
plt.imshow(img, cmap="gray")
plt.xticks([])
plt.yticks([])
ax = plt.subplot(4, 3, i*3+3)
img = sigs.reshape((gs, gs, 4))[:, :, i]
plt.imshow(img, cmap="gray")
plt.xticks([])
plt.yticks([])
for j in range(len(blobs)):
sblobs = blobs[j]
s = 2**(j+1)
r = np.sqrt(2.0) * s
im = sblobs[:, :, i]
posns = np.transpose(im.nonzero()) * 2**(j+1)
for xy in posns:
circ = plt.Circle((xy[1], xy[0]), r, color="green", fill=False)
ax.add_patch(circ)
plt.show()
示例15: int
arg1 = sys.argv[1]
if int(arg1):
print "using autojit"
autojit = autojit if int(arg1) else lambda: (lambda x: x)
jit = jit if int(arg1) else lambda x: (lambda x: x)
print autojit
print "generating checkerboard"
t = time.time()
tform = AffineTransform(scale=(1.3, 1.1), rotation=1, shear=0.7,
translation=(210, 50))
image = warp(data.checkerboard(), tform.inverse, output_shape=(5000, 5000))
# rr, cc = ellipse(310, 175, 100, 100)
#
# image[rr, cc] = 1
print "took", time.time() - t
print "generating squares"
@jit('void()')
def generate_squares_niave():
for i in range(0, 5*50, 50):
for j in range(180 + i, 230 + i):
for k in range(10 + i, 60 + i):
image[j, k] = 1
for j in range(230 + i, 280 + i):
for k in range(60 + i, 110 + i):