本文整理汇总了Python中skimage.data.camera函数的典型用法代码示例。如果您正苦于以下问题:Python camera函数的具体用法?Python camera怎么用?Python camera使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了camera函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
"""Load image, apply sobel (to get x/y gradients), plot the results."""
img = data.camera()
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
sobel_x = np.rot90(sobel_y) # rotates counter-clockwise
# apply x/y sobel filter to get x/y gradients
img_sx = signal.correlate(img, sobel_x, mode="same")
img_sy = signal.correlate(img, sobel_y, mode="same")
# combine x/y gradients to gradient magnitude
# scikit-image's implementation divides by sqrt(2), not sure why
img_s = np.sqrt(img_sx ** 2 + img_sy ** 2) / np.sqrt(2)
# create binarized image
threshold = np.average(img_s)
img_s_bin = np.zeros(img_s.shape)
img_s_bin[img_s > threshold] = 1
# generate ground truth (scikit-image method)
ground_truth = skifilters.sobel(data.camera())
# plot
util.plot_images_grayscale(
[img, img_sx, img_sy, img_s, img_s_bin, ground_truth],
[
"Image",
"Sobel (x)",
"Sobel (y)",
"Sobel (magnitude)",
"Sobel (magnitude, binarized)",
"Sobel (Ground Truth)",
],
)
示例2: test_rect_tool
def test_rect_tool():
img = data.camera()
viewer = ImageViewer(img)
tool = RectangleTool(viewer.ax, maxdist=10)
tool.extents = (100, 150, 100, 150)
assert_equal(tool.corners,
((100, 150, 150, 100), (100, 100, 150, 150)))
assert_equal(tool.extents, (100, 150, 100, 150))
assert_equal(tool.edge_centers,
((100, 125.0, 150, 125.0), (125.0, 100, 125.0, 150)))
assert_equal(tool.geometry, (100, 150, 100, 150))
# grab a corner and move it
grab = create_mouse_event(viewer.ax, xdata=100, ydata=100)
tool.press(grab)
move = create_mouse_event(viewer.ax, xdata=120, ydata=120)
tool.onmove(move)
tool.release(move)
assert_equal(tool.geometry, [120, 150, 120, 150])
# create a new line
new = create_mouse_event(viewer.ax, xdata=10, ydata=10)
tool.press(new)
move = create_mouse_event(viewer.ax, xdata=100, ydata=100)
tool.onmove(move)
tool.release(move)
assert_equal(tool.geometry, [10, 100, 10, 100])
示例3: test_image_stack_correlation
def test_image_stack_correlation():
num_levels = 1
num_bufs = 2 # must be even
coins = data.camera()
coins_stack = []
for i in range(4):
coins_stack.append(coins)
coins_mesh = np.zeros_like(coins)
coins_mesh[coins < 30] = 1
coins_mesh[coins > 50] = 2
g2, lag_steps = corr.multi_tau_auto_corr(num_levels, num_bufs, coins_mesh, coins_stack)
assert np.all(g2[:, 0], axis=0)
assert np.all(g2[:, 1], axis=0)
num_buf = 5
# check the number of buffers are even
assert_raises(ValueError, lambda: corr.multi_tau_auto_corr(num_levels, num_buf, coins_mesh, coins_stack))
# check image shape and labels shape are equal
# assert_raises(ValueError,
# lambda : corr.multi_tau_auto_corr(num_levels, num_bufs,
# indices, coins_stack))
# check the number of pixels is zero
mesh = np.zeros_like(coins)
assert_raises(ValueError, lambda: corr.multi_tau_auto_corr(num_levels, num_bufs, mesh, coins_stack))
示例4: test_li_camera_image
def test_li_camera_image():
image = skimage.img_as_ubyte(data.camera())
threshold = threshold_li(image)
ce_actual = _cross_entropy(image, threshold)
assert 62 < threshold_li(image) < 63
assert ce_actual < _cross_entropy(image, threshold + 1)
assert ce_actual < _cross_entropy(image, threshold - 1)
示例5: test_masked_registration_random_masks_non_equal_sizes
def test_masked_registration_random_masks_non_equal_sizes():
"""masked_register_translation should be able to register
translations between images that are not the same size even
with random masks."""
# See random number generator for reproducible results
np.random.seed(23)
reference_image = camera()
shift = (-7, 12)
shifted = np.real(np.fft.ifft2(fourier_shift(
np.fft.fft2(reference_image), shift)))
# Crop the shifted image
shifted = shifted[64:-64, 64:-64]
# Random masks with 75% of pixels being valid
ref_mask = np.random.choice(
[True, False], reference_image.shape, p=[3 / 4, 1 / 4])
shifted_mask = np.random.choice(
[True, False], shifted.shape, p=[3 / 4, 1 / 4])
measured_shift = masked_register_translation(
reference_image,
shifted,
np.ones_like(ref_mask),
np.ones_like(shifted_mask))
assert_equal(measured_shift, -np.array(shift))
示例6: main
def main():
"""Load template image (needle) and the large example image (haystack),
generate matching score per pixel, plot the results."""
img_haystack = skiutil.img_as_float(data.camera()) # the image in which to search
img_needle = img_haystack[140:190, 220:270] # the template to search for
img_sad = np.zeros(img_haystack.shape) # score image
height_h, width_h = img_haystack.shape
height_n, width_n = img_needle.shape
# calculate score for each pixel
# stop iterating over pixels when the whole template cannot any more (i.e. stop
# at bottom and right border)
for y in range(height_h - height_n):
for x in range(width_h - width_n):
patch = img_haystack[y:y+height_n, x:x+width_n]
img_sad[y, x] = sad(img_needle, patch)
img_sad = img_sad / np.max(img_sad)
# add highest score to bottom and right borders
img_sad[height_h-height_n:, :] = np.max(img_sad[0:height_h, 0:width_h])
img_sad[:, width_h-width_n:] = np.max(img_sad[0:height_h, 0:width_h])
# plot results
util.plot_images_grayscale(
[img_haystack, img_needle, img_sad],
["Image", "Image (Search Template)", "Matching (darkest = best match)"]
)
示例7: setUp
def setUp(self):
self.seed = 1234
self.BATCH_SIZE = 10
self.num_batches = 1000
np.random.seed(self.seed)
### 2D initialiazations
cam = data.camera()
self.cam = cam[np.newaxis, np.newaxis, :, :]
self.cam_left = self.cam[:,:,:,::-1]
self.cam_updown = self.cam[:,:,::-1,:]
self.cam_updown_left = self.cam[:,:,::-1,::-1]
self.x_2D = self.cam
self.y_2D = self.cam
### 3D initialiazations
self.cam_3D = np.random.rand(20,20,20)[np.newaxis, np.newaxis, :, :, :]
self.cam_3D_left = self.cam_3D[:,:,:,::-1,:]
self.cam_3D_updown = self.cam_3D[:,:,::-1,:,:]
self.cam_3D_updown_left = self.cam_3D[:,:,::-1,::-1,:]
self.cam_3D_left_z = self.cam_3D_left[:,:,:,:,::-1]
self.cam_3D_updown_z = self.cam_3D_updown[:,:,:,:,::-1]
self.cam_3D_updown_left_z = self.cam_3D_updown_left[:,:,:,:,::-1]
self.cam_3D_z = self.cam_3D[:,:,:,:,::-1]
self.x_3D = self.cam_3D
self.y_3D = self.cam_3D
示例8: run
def run():
# img = np.ones((8,8))
img = data.camera()
# sp.misc.imsave('woop_orig.png', img)
# img_f = np.fft.fft2(img)
# print img.shape
# print img_f.shape
# sigma = 4
# img_f = fft2_deriv(img_f, sigma, 3, 3)
# img = np.fft.ifft2(img_f).real
# print np.max(img), np.min(img)
# sp.misc.imsave('woop.png', img)
# img = data.camera()
# img = gaussian_filter(img, sigma)
# sp.misc.imsave('woop_gaussian_filter.png', img)
# return
# y,x = np.mgrid[-50:51,-50:51]
# img = exp(- (x**2 + y**2)/(2.*1**2))
# print img
# print img_f
# sp.misc.imsave('img_s.png', img)
# sp.misc.imsave('img_f.png', img_f.real)
# sp.misc.imsave('img_f_.png', img_f.imag)
# img = sp.misc.imread('img.png',flatten=True)
jets = jet(img)
示例9: test_compare_8bit_vs_16bit
def test_compare_8bit_vs_16bit():
# filters applied on 8-bit image ore 16-bit image (having only real 8-bit
# of dynamic) should be identical
image8 = util.img_as_ubyte(data.camera())
image16 = image8.astype(np.uint16)
assert_equal(image8, image16)
methods = [
"autolevel",
"bottomhat",
"equalize",
"gradient",
"maximum",
"mean",
"subtract_mean",
"median",
"minimum",
"modal",
"enhance_contrast",
"pop",
"threshold",
"tophat",
]
for method in methods:
func = getattr(rank, method)
f8 = func(image8, disk(3))
f16 = func(image16, disk(3))
assert_equal(f8, f16)
示例10: test_rect_tool
def test_rect_tool():
img = data.camera()
viewer = ImageViewer(img)
tool = RectangleTool(viewer, maxdist=10)
tool.extents = (100, 150, 100, 150)
assert_equal(tool.corners,
((100, 150, 150, 100), (100, 100, 150, 150)))
assert_equal(tool.extents, (100, 150, 100, 150))
assert_equal(tool.edge_centers,
((100, 125.0, 150, 125.0), (125.0, 100, 125.0, 150)))
assert_equal(tool.geometry, (100, 150, 100, 150))
# grab a corner and move it
do_event(viewer, 'mouse_press', xdata=100, ydata=100)
do_event(viewer, 'move', xdata=120, ydata=120)
do_event(viewer, 'mouse_release')
# assert_equal(tool.geometry, [120, 150, 120, 150])
# create a new line
do_event(viewer, 'mouse_press', xdata=10, ydata=10)
do_event(viewer, 'move', xdata=100, ydata=100)
do_event(viewer, 'mouse_release')
assert_equal(tool.geometry, [10, 100, 10, 100])
示例11: test_crop
def test_crop():
image = data.camera()
viewer = ImageViewer(image)
c = Crop()
viewer += c
c.crop((0, 100, 0, 100))
assert_equal(viewer.image.shape, (101, 101))
示例12: test_isodata_camera_image
def test_isodata_camera_image():
camera = skimage.img_as_ubyte(data.camera())
threshold = threshold_isodata(camera)
assert np.floor((camera[camera <= threshold].mean() + camera[camera > threshold].mean()) / 2.0) == threshold
assert threshold == 87
assert threshold_isodata(camera, return_all=True) == [87]
示例13: test_threshold_minimum
def test_threshold_minimum():
camera = skimage.img_as_ubyte(data.camera())
threshold = threshold_minimum(camera)
assert_equal(threshold, 76)
astronaut = skimage.img_as_ubyte(data.astronaut())
threshold = threshold_minimum(astronaut)
assert_equal(threshold, 114)
示例14: test_is_rgb
def test_is_rgb():
color = data.lena()
gray = data.camera()
assert is_rgb(color)
assert not is_gray(color)
assert is_gray(gray)
assert not is_gray(color)
示例15: test_measure
def test_measure():
image = data.camera()
viewer = ImageViewer(image)
m = Measure()
viewer += m
m.line_changed([(0, 0), (10, 10)])
assert_equal(str(m._length.text), '14.1')
assert_equal(str(m._angle.text[:5]), '135.0')