当前位置: 首页>>代码示例>>Python>>正文


Python color.lab2rgb函数代码示例

本文整理汇总了Python中skimage.color.lab2rgb函数的典型用法代码示例。如果您正苦于以下问题:Python lab2rgb函数的具体用法?Python lab2rgb怎么用?Python lab2rgb使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了lab2rgb函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_batch

def plot_batch(color_model, q_ab, X_batch_black, X_batch_color, batch_size, h, w, nb_q, epoch):

    # Format X_colorized
    X_colorized = color_model.predict(X_batch_black / 100.)[:, :, :, :-1]
    X_colorized = X_colorized.reshape((batch_size * h * w, nb_q))
    X_colorized = q_ab[np.argmax(X_colorized, 1)]
    X_a = X_colorized[:, 0].reshape((batch_size, 1, h, w))
    X_b = X_colorized[:, 1].reshape((batch_size, 1, h, w))
    X_colorized = np.concatenate((X_batch_black, X_a, X_b), axis=1).transpose(0, 2, 3, 1)
    X_colorized = [np.expand_dims(color.lab2rgb(im), 0) for im in X_colorized]
    X_colorized = np.concatenate(X_colorized, 0).transpose(0, 3, 1, 2)

    X_batch_color = [np.expand_dims(color.lab2rgb(im.transpose(1, 2, 0)), 0) for im in X_batch_color]
    X_batch_color = np.concatenate(X_batch_color, 0).transpose(0, 3, 1, 2)

    list_img = []
    for i, img in enumerate(X_colorized[:min(32, batch_size)]):
        arr = np.concatenate([X_batch_color[i], np.repeat(X_batch_black[i] / 100., 3, axis=0), img], axis=2)
        list_img.append(arr)

    plt.figure(figsize=(20,20))
    list_img = [np.concatenate(list_img[4 * i: 4 * (i + 1)], axis=2) for i in range(len(list_img) / 4)]
    arr = np.concatenate(list_img, axis=1)
    plt.imshow(arr.transpose(1,2,0))
    ax = plt.gca()
    ax.get_xaxis().set_ticks([])
    ax.get_yaxis().set_ticks([])
    plt.tight_layout()
    plt.savefig("../../figures/fig_epoch%s.png" % epoch)
    plt.clf()
    plt.close()
开发者ID:MiG-Kharkov,项目名称:DeepLearningImplementations,代码行数:31,代码来源:general_utils.py

示例2: test_rgb_lch_roundtrip

 def test_rgb_lch_roundtrip(self):
     rgb = img_as_float(self.img_rgb)
     lab = rgb2lab(rgb)
     lch = lab2lch(lab)
     lab2 = lch2lab(lch)
     rgb2 = lab2rgb(lab2)
     assert_array_almost_equal(rgb, rgb2)
开发者ID:AceHao,项目名称:scikit-image,代码行数:7,代码来源:test_colorconv.py

示例3: LAB

def LAB(img, k, filename):
    # print 'lab'
    # restructure image pixel values into range from 0 to 1 - needed for library
    img = img * 1.0 / MAX_COLOR_VAL

    # convert rgb to LAB
    pixels_lab = color.rgb2lab(img)
    # remove the L channel
    L = pixels_lab[:, :, 0]

    # reshape, cluster, and retrieve quantized values
    pixels_l = np.reshape(L, (L.shape[0] * L.shape[1], 1))
    clustered = cluster_pixels(pixels_l, k, (L.shape[0], L.shape[1]))
    pixels_lab[:, :, 0] = clustered[:, :, 0]

    # convert result to 255 RGB space
    quanted_img = color.lab2rgb(pixels_lab) * MAX_COLOR_VAL
    quanted_img = quanted_img.astype('uint8')

    fig = plt.figure(1)
    plt.imshow(quanted_img)
    plt.title("LAB quantization where k is " + str(k))
    plt.savefig('Q2/' + filename + '_LAB.png')
    plt.close(fig)
    return quanted_img
开发者ID:chongyeegan,项目名称:computer-vision-hw-1,代码行数:25,代码来源:q2.py

示例4: imshow_rand

def imshow_rand(im, axis=None, labrandom=True):
    """Show a segmentation using a random colormap.

    Parameters
    ----------
    im : np.ndarray of int, shape (M, N)
        The segmentation to be displayed.
    labrandom : bool, optional
        Use random points in the Lab colorspace instead of RGB.

    Returns
    -------
    fig : plt.Figure
        The image shown.
    """
    if axis is None:
        fig, axis = plt.subplots()
    rand_colors = np.random.random(size=(ceil(np.max(im)), 3))
    if labrandom:
        rand_colors[:, 0] = rand_colors[:, 0] * 81 + 39
        rand_colors[:, 1] = rand_colors[:, 1] * 185 - 86
        rand_colors[:, 2] = rand_colors[:, 2] * 198 - 108
        rand_colors = color.lab2rgb(rand_colors[np.newaxis, ...])[0]
        rand_colors[rand_colors < 0] = 0
        rand_colors[rand_colors > 1] = 1
    rcmap = cm.colors.ListedColormap(np.concatenate((np.zeros((1, 3)),
                                                     rand_colors)))
    return axis.imshow(im, cmap=rcmap)
开发者ID:janelia-flyem,项目名称:gala,代码行数:28,代码来源:viz.py

示例5: colorizeTest

def colorizeTest(test_img_lum, trainData):
	n = (sampling_side-1)/2
	x_min = n
	x_max = test_img_lum.shape[0] - n - 1
	y_min = n
	y_max = test_img_lum.shape[1] - n - 1

	# classify
	output = np.zeros(test_img_lum.shape + (3,))
	count = 0
	total_pixels = (x_max - x_min + 1)*(y_max - y_min + 1) / 100.0
	for (x, y), lum in np.ndenumerate(test_img_lum):

		# make sure we don't look at pixels without enough neighbors
		if x < x_min or x > x_max or y < y_min or y > y_max :
			continue

		count += 1
		if count%100 == 0:
			print 1.0 * count / total_pixels

		output[x,y,0] = lum
		stddev = computeStdDevLuminance(test_img_lum, x, y)
		
		closestIndex = getClosestTraining([lum, stddev], trainData[:,[0,3]])
		output[x, y, 1:3] = trainData[closestIndex, 1:3]

	return color.lab2rgb(output[x_min : x_max + 1, y_min : y_max + 1])
开发者ID:jandress94,项目名称:cs229-cris-jim,代码行数:28,代码来源:test_baseline.py

示例6: check_HDF5

def check_HDF5(size=64):
    """
    Plot images with landmarks to check the processing
    """

    # Get hdf5 file
    hdf5_file = os.path.join(data_dir, "CelebA_%s_data.h5" % size)

    with h5py.File(hdf5_file, "r") as hf:
        data_color = hf["training_color_data"]
        data_lab = hf["training_lab_data"]
        data_black = hf["training_black_data"]
        for i in range(data_color.shape[0]):
            fig = plt.figure()
            gs = gridspec.GridSpec(3, 1)
            for k in range(3):
                ax = plt.subplot(gs[k])
                if k == 0:
                    img = data_color[i, :, :, :].transpose(1,2,0)
                    ax.imshow(img)
                elif k == 1:
                    img = data_lab[i, :, :, :].transpose(1,2,0)
                    img = color.lab2rgb(img)
                    ax.imshow(img)
                elif k == 2:
                    img = data_black[i, 0, :, :] / 255.
                    ax.imshow(img, cmap="gray")
            gs.tight_layout(fig)
            plt.show()
            plt.clf()
            plt.close()
开发者ID:MiG-Kharkov,项目名称:DeepLearningImplementations,代码行数:31,代码来源:make_dataset.py

示例7: save_img

def save_img(img_path, lab):   
    lab = clamp_lab_img(lab)    
    rgb = color.lab2rgb(np.float64(lab))
    print 'rgb min max', np.min(rgb[:, :, 0]), np.max(rgb[:, :, 0]), \
    np.min(rgb[:, :, 1]), np.max(rgb[:, :, 1]), np.min(rgb[:, :, 2]), np.max(rgb[:, :, 2])
    
    scipy.misc.imsave(img_path, rgb)
开发者ID:mukhalad,项目名称:cuda_convnet_plus,代码行数:7,代码来源:util_image.py

示例8: imshow_rand

def imshow_rand(im, labrandom=True):
    """Show a segmentation using a random colormap.

    Parameters
    ----------
    im : np.ndarray of int, shape (M, N)
        The segmentation to be displayed.
    labrandom : bool, optional
        Use random points in the Lab colorspace instead of RGB.

    Returns
    -------
    fig : plt.Figure
        The image shown.
    """
    rand_colors = np.random.rand(ceil(im.max()), 3)
    if labrandom:
        rand_colors[:, 0] = rand_colors[:, 0] * 60 + 20
        rand_colors[:, 1] = rand_colors[:, 1] * 185 - 85
        rand_colors[:, 2] = rand_colors[:, 2] * 198 - 106
        rand_colors = color.lab2rgb(rand_colors[np.newaxis, ...])[0]
        rand_colors[rand_colors < 0] = 0
        rand_colors[rand_colors > 1] = 1
    rcmap = matplotlib.colors.ListedColormap(np.concatenate(
        (np.zeros((1,3)), rand_colors)
    ))
    return plt.imshow(im, cmap=rcmap, interpolation='nearest')
开发者ID:cmriddle,项目名称:gala,代码行数:27,代码来源:viz.py

示例9: sync_buffers_from_lab

 def sync_buffers_from_lab(self):
     lab = self.lab.value
     rgb = color.lab2rgb(lab[:,:,:3])
     rgb *= 255
     rgb_ = np.zeros((rgb.shape[0], rgb.shape[1], 4), dtype=np.uint8)
     rgb_[:,:,:3] = rgb[:,:,:3]
     self.rgb.value = rgb_   
开发者ID:hagisgit,项目名称:SLIC,代码行数:7,代码来源:slic.py

示例10: test_lab_rgb_outlier

 def test_lab_rgb_outlier(self):
     lab_array = np.ones((3, 1, 3))
     lab_array[0] = [50, -12, 85]
     lab_array[1] = [50, 12, -85]
     lab_array[2] = [90, -4, -47]
     rgb_array = np.array([[[0.501, 0.481, 0]], [[0, 0.482, 1.0]], [[0.578, 0.914, 1.0]]])
     assert_almost_equal(lab2rgb(lab_array), rgb_array, decimal=3)
开发者ID:soupault,项目名称:scikit-image,代码行数:7,代码来源:test_colorconv.py

示例11: JPEG_decompression

def JPEG_decompression(data, channels=3):
	#Meta Data
	height = data[-1]
	width = data[-2]
	quality = data[-3]
	d_height = data[-4]
	d_width = data[-5]

	#Remove Meta Data
	data = data[:-5]
	#Unzigzag
	data_z = zigzag_decode(data, d_height, d_width, channels)
	#Unquantize
	im_q = unquantize(data_z,quality)
	#IDCT
	im_idct = idct_2d(im_q)
	#Unblock and Unpad
	im = unblock_image(im_idct,d_height,d_width)
	#Upsample

	#Undo offset and return to RGB
	im[:,:,[1,2]] -= 128
	im = lab2rgb(im) * 255 # lab2rgb converts to float64
	#Undo Padding
	im = im[:d_height,:d_width]

	#Upsample
	im = utils.upsample(im,(height,width))

	return im.astype(np.uint8)
开发者ID:levtauz,项目名称:Image_Project,代码行数:30,代码来源:JPEG.py

示例12: sshow

def sshow(im, labrandom=True):
    """Show a segmentation (or cross-section) using a random colormap.

    Parameters
    ----------
    im : np.ndarray of int
        The segmentation to be displayed.
    labrandom : bool, optional
        Use random points in the Lab colorspace instead of RGB.

    Returns
    -------
    ax : matplotlib AxesImage object
        The figure axes.
    """
    if im.ndim > 2:
        mid = im.shape[0] // 2
        ax = sshow(im[mid], labrandom)
    else:
        rand_colors = np.random.rand(np.ceil(im.max()), 3)
        if labrandom:
            rand_colors[:, 0] = rand_colors[:, 0] * 60 + 20
            rand_colors[:, 1] = rand_colors[:, 1] * 185 - 85
            rand_colors[:, 2] = rand_colors[:, 2] * 198 - 106
            rand_colors = color.lab2rgb(rand_colors[np.newaxis, ...])[0]
            rand_colors[rand_colors < 0] = 0
            rand_colors[rand_colors > 1] = 1
        rcmap = colors.ListedColormap(np.concatenate((np.zeros((1, 3)),
                                                      rand_colors)))
        ax = plt.imshow(im, cmap=rcmap, interpolation='nearest')
    return ax
开发者ID:jni,项目名称:vis,代码行数:31,代码来源:imshows.py

示例13: run_color

def run_color(image, image_out):
    caffe.set_mode_cpu()
    net = caffe.Net('colorization_deploy_v0.prototxt', 'colorization_release_v0.caffemodel', caffe.TEST)

    (H_in,W_in) = net.blobs['data_l'].data.shape[2:] # get input shape
    (H_out,W_out) = net.blobs['class8_ab'].data.shape[2:] # get output shape
    net.blobs['Trecip'].data[...] = 6/np.log(10) # 1/T, set annealing temperature
    
    img_rgb = caffe.io.load_image(image)
    img_lab = color.rgb2lab(img_rgb) # convert image to lab color space
    img_l = img_lab[:,:,0] # pull out L channel
    (H_orig,W_orig) = img_rgb.shape[:2] # original image size

    # resize image to network input size
    img_rs = caffe.io.resize_image(img_rgb,(H_in,W_in)) # resize image to network input size
    img_lab_rs = color.rgb2lab(img_rs)
    img_l_rs = img_lab_rs[:,:,0]

    net.blobs['data_l'].data[0,0,:,:] = img_l_rs-50 # subtract 50 for mean-centering
    net.forward() # run network

    ab_dec = net.blobs['class8_ab'].data[0,:,:,:].transpose((1,2,0)) # this is our result
    ab_dec_us = sni.zoom(ab_dec,(1.*H_orig/H_out,1.*W_orig/W_out,1)) # upsample to match size of original image L
    img_lab_out = np.concatenate((img_l[:,:,np.newaxis],ab_dec_us),axis=2) # concatenate with original image L
    img_rgb_out = np.clip(color.lab2rgb(img_lab_out),0,1) # convert back to rgb

    scipy.misc.imsave(image_out, img_rgb_out)
开发者ID:tfolkman,项目名称:384_final_project,代码行数:27,代码来源:run_color.py

示例14: dominant_colors

def dominant_colors(image, num_colors, mask=None):
    """Reduce image colors to a representative set of a given size.

    Args:
        image (ndarray): BGR image of shape n x m x 3.
        num_colors (int): Number of colors to reduce to.
        mask (array_like, optional): Foreground mask. Defaults to None.

    Returns:
        list: The list of Color objects representing the most dominant colors in the image.

    """
    image = rgb2lab(image / 255.0)

    if mask is not None:
        data = image[mask > 250]
    else:
        data = np.reshape(image, (-1, 3))

    # kmeans algorithm has inherent randomness - result will not be exactly the same
    # every time. Fairly consistent with >= 30 iterations
    centroids, labels = kmeans2(data, num_colors, iter=30)
    counts = np.histogram(labels, bins=range(0, num_colors + 1), normed=True)[0]

    centroids_RGB = lab2rgb(centroids.reshape(-1, 1, 3))[:, 0, :] * 255.0
    colors = [Color(centroid, count) for centroid, count in zip(centroids_RGB, counts)]
    colors.sort(key=lambda color: np.mean(color.BGR))

    return colors
开发者ID:jrdurrant,项目名称:vision,代码行数:29,代码来源:color_analysis.py

示例15: snap_ab

def snap_ab(input_l, input_rgb, return_type='rgb'):
    ''' given an input lightness and rgb, snap the color into a region where l,a,b is in-gamut
    '''
    T = 20
    warnings.filterwarnings("ignore")
    input_lab = rgb2lab_1d(np.array(input_rgb))  # convert input to lab
    conv_lab = input_lab.copy()  # keep ab from input
    for t in range(T):
        conv_lab[0] = input_l  # overwrite input l with input ab
        old_lab = conv_lab
        tmp_rgb = color.lab2rgb(conv_lab[np.newaxis, np.newaxis, :]).flatten()
        tmp_rgb = np.clip(tmp_rgb, 0, 1)
        conv_lab = color.rgb2lab(tmp_rgb[np.newaxis, np.newaxis, :]).flatten()
        dif_lab = np.sum(np.abs(conv_lab-old_lab))
        if dif_lab < 1:
            break
        # print(conv_lab)

    conv_rgb_ingamut = lab2rgb_1d(conv_lab, clip=True, dtype='uint8')
    if (return_type == 'rgb'):
        return conv_rgb_ingamut

    elif(return_type == 'lab'):
        conv_lab_ingamut = rgb2lab_1d(conv_rgb_ingamut)
        return conv_lab_ingamut
开发者ID:richzhang,项目名称:colorization,代码行数:25,代码来源:lab_gamut.py


注:本文中的skimage.color.lab2rgb函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。