当前位置: 首页>>代码示例>>Python>>正文


Python _warnings.expected_warnings函数代码示例

本文整理汇总了Python中skimage._shared._warnings.expected_warnings函数的典型用法代码示例。如果您正苦于以下问题:Python expected_warnings函数的具体用法?Python expected_warnings怎么用?Python expected_warnings使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了expected_warnings函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: check_wrap_around

def check_wrap_around(ndim, axis):
    # create a ramp, but with the last pixel along axis equalling the first
    elements = 100
    ramp = np.linspace(0, 12 * np.pi, elements)
    ramp[-1] = ramp[0]
    image = ramp.reshape(tuple([elements if n == axis else 1
                                for n in range(ndim)]))
    image_wrapped = np.angle(np.exp(1j * image))

    index_first = tuple([0] * ndim)
    index_last = tuple([-1 if n == axis else 0 for n in range(ndim)])
    # unwrap the image without wrap around
    # We do not want warnings about length 1 dimensions
    with expected_warnings([r'Image has a length 1 dimension|\A\Z']):
        image_unwrap_no_wrap_around = unwrap_phase(image_wrapped, seed=0)
    print('endpoints without wrap_around:',
          image_unwrap_no_wrap_around[index_first],
          image_unwrap_no_wrap_around[index_last])
    # without wrap around, the endpoints of the image should differ
    assert_(abs(image_unwrap_no_wrap_around[index_first] -
                image_unwrap_no_wrap_around[index_last]) > np.pi)
    # unwrap the image with wrap around
    wrap_around = [n == axis for n in range(ndim)]
    # We do not want warnings about length 1 dimensions
    with expected_warnings([r'Image has a length 1 dimension.|\A\Z']):
        image_unwrap_wrap_around = unwrap_phase(image_wrapped, wrap_around,
                                                seed=0)
    print('endpoints with wrap_around:',
          image_unwrap_wrap_around[index_first],
          image_unwrap_wrap_around[index_last])
    # with wrap around, the endpoints of the image should be equal
    assert_almost_equal(image_unwrap_wrap_around[index_first],
                        image_unwrap_wrap_around[index_last])
开发者ID:TheArindham,项目名称:scikit-image,代码行数:33,代码来源:test_unwrap.py

示例2: test_neg_inf

def test_neg_inf():
    expected_costs = np.where(a == 1, np.inf, 0)
    expected_path = [(1, 6),
                     (1, 5),
                     (1, 4),
                     (1, 3),
                     (1, 2),
                     (2, 1),
                     (3, 1),
                     (4, 1),
                     (5, 1),
                     (6, 1)]
    test_neg = np.where(a == 1, -1, 0)
    test_inf = np.where(a == 1, np.inf, 0)
    with expected_warnings(['Upgrading NumPy' + warning_optional]):
        m = mcp.MCP(test_neg, fully_connected=True)
    costs, traceback = m.find_costs([(1, 6)])
    return_path = m.traceback((6, 1))
    assert_array_equal(costs, expected_costs)
    assert_array_equal(return_path, expected_path)
    with expected_warnings(['Upgrading NumPy' + warning_optional]):
        m = mcp.MCP(test_inf, fully_connected=True)
    costs, traceback = m.find_costs([(1, 6)])
    return_path = m.traceback((6, 1))
    assert_array_equal(costs, expected_costs)
    assert_array_equal(return_path, expected_path)
开发者ID:AbdealiJK,项目名称:scikit-image,代码行数:26,代码来源:test_mcp.py

示例3: color_check

def color_check(plugin, fmt="png"):
    """Check roundtrip behavior for color images.

    All major input types should be handled as ubytes and read
    back correctly.
    """
    img = img_as_ubyte(data.chelsea())
    r1 = roundtrip(img, plugin, fmt)
    testing.assert_allclose(img, r1)

    img2 = img > 128
    r2 = roundtrip(img2, plugin, fmt)
    testing.assert_allclose(img2.astype(np.uint8), r2)

    img3 = img_as_float(img)
    with expected_warnings(["precision loss|unclosed file"]):
        r3 = roundtrip(img3, plugin, fmt)
    testing.assert_allclose(r3, img)

    with expected_warnings(["precision loss"]):
        img4 = img_as_int(img)
    if fmt.lower() in (("tif", "tiff")):
        img4 -= 100
        with expected_warnings(["sign loss"]):
            r4 = roundtrip(img4, plugin, fmt)
        testing.assert_allclose(r4, img4)
    else:
        with expected_warnings(["sign loss|precision loss|unclosed file"]):
            r4 = roundtrip(img4, plugin, fmt)
            testing.assert_allclose(r4, img_as_ubyte(img4))

    img5 = img_as_uint(img)
    with expected_warnings(["precision loss|unclosed file"]):
        r5 = roundtrip(img5, plugin, fmt)
    testing.assert_allclose(r5, img)
开发者ID:ymarfoq,项目名称:outilACVDesagregation,代码行数:35,代码来源:testing.py

示例4: test_save_buttons

def test_save_buttons():
    viewer = get_image_viewer()
    sv = SaveButtons()
    viewer.plugins[0] += sv

    import tempfile
    fid, filename = tempfile.mkstemp(suffix='.png')
    os.close(fid)

    timer = QtCore.QTimer()
    timer.singleShot(100, QtGui.QApplication.quit)

    # exercise the button clicks
    sv.save_stack.click()
    sv.save_file.click()

    # call the save functions directly
    sv.save_to_stack()
    with expected_warnings(['precision loss']):
        sv.save_to_file(filename)

    img = data.imread(filename)

    with expected_warnings(['precision loss']):
        assert_almost_equal(img, img_as_uint(viewer.image))

    img = io.pop()
    assert_almost_equal(img, viewer.image)

    os.remove(filename)
开发者ID:AbdealiJK,项目名称:scikit-image,代码行数:30,代码来源:test_widgets.py

示例5: test_wavelet_threshold

def test_wavelet_threshold():
    rstate = np.random.RandomState(1234)

    img = astro_gray
    sigma = 0.1
    noisy = img + sigma * rstate.randn(*(img.shape))
    noisy = np.clip(noisy, 0, 1)

    # employ a single, user-specified threshold instead of BayesShrink sigmas
    with expected_warnings([PYWAVELET_ND_INDEXING_WARNING]):
        denoised = _wavelet_threshold(noisy, wavelet='db1', method=None,
                                      threshold=sigma)
    psnr_noisy = compare_psnr(img, noisy)
    psnr_denoised = compare_psnr(img, denoised)
    assert_(psnr_denoised > psnr_noisy)

    # either method or threshold must be defined
    with testing.raises(ValueError):
        _wavelet_threshold(noisy, wavelet='db1', method=None, threshold=None)

    # warns if a threshold is provided in a case where it would be ignored
    with expected_warnings(["Thresholding method ",
                            PYWAVELET_ND_INDEXING_WARNING]):
        _wavelet_threshold(noisy, wavelet='db1', method='BayesShrink',
                           threshold=sigma)
开发者ID:ThomasWalter,项目名称:scikit-image,代码行数:25,代码来源:test_denoise.py

示例6: _test_image

    def _test_image(self, image):
        with expected_warnings(['precision loss']):
            result_opening = grey.opening(image, self.disk)
        testing.assert_equal(result_opening, self.expected_opening)

        with expected_warnings(['precision loss']):
            result_closing = grey.closing(image, self.disk)
        testing.assert_equal(result_closing, self.expected_closing)
开发者ID:haohao200609,项目名称:Hybrid,代码行数:8,代码来源:test_grey.py

示例7: test_imsave_incorrect_dimension

def test_imsave_incorrect_dimension():
    with temporary_file(suffix='.png') as fname:
        with testing.raises(ValueError):
            with expected_warnings([fname + ' is a low contrast image']):
                imsave(fname, np.zeros((2, 3, 3, 1)))
        with testing.raises(ValueError):
            with expected_warnings([fname + ' is a low contrast image']):
                imsave(fname, np.zeros((2, 3, 2)))
开发者ID:Cadair,项目名称:scikit-image,代码行数:8,代码来源:test_pil.py

示例8: test_deprecated_params_attributes

def test_deprecated_params_attributes():
    for t in ('projective', 'affine', 'similarity'):
        tform = estimate_transform(t, SRC, DST)
        with expected_warnings(['`_matrix`.*deprecated']):
            assert_equal(tform._matrix, tform.params)

    tform = estimate_transform('polynomial', SRC, DST, order=3)
    with expected_warnings(['`_params`.*deprecated']):
        assert_equal(tform._params, tform.params)
开发者ID:haohao200609,项目名称:Hybrid,代码行数:9,代码来源:test_geometric.py

示例9: test_euler_number

def test_euler_number():
    with expected_warnings(['`background`|CObject type']):
        en = regionprops(SAMPLE)[0].euler_number
    assert en == 0

    SAMPLE_mod = SAMPLE.copy()
    SAMPLE_mod[7, -3] = 0
    with expected_warnings(['`background`|CObject type']):
        en = regionprops(SAMPLE_mod)[0].euler_number
    assert en == -1
开发者ID:MartinSavc,项目名称:scikit-image,代码行数:10,代码来源:test_regionprops.py

示例10: test_resize3d_keep

def test_resize3d_keep():
    # keep 3rd dimension
    x = np.zeros((5, 5, 3), dtype=np.double)
    x[1, 1, :] = 1
    with expected_warnings(['The default mode']):
        resized = resize(x, (10, 10), order=0)
    ref = np.zeros((10, 10, 3))
    ref[2:4, 2:4, :] = 1
    assert_almost_equal(resized, ref)
    with expected_warnings(['The default mode']):
        resized = resize(x, (10, 10, 3), order=0)
    assert_almost_equal(resized, ref)
开发者ID:noahstier,项目名称:scikit-image,代码行数:12,代码来源:test_warps.py

示例11: test_3d_fallback_black_tophat

def test_3d_fallback_black_tophat():
    image = np.ones((7, 7, 7), dtype=bool)
    image[2, 2:4, 2:4] = 0
    image[3, 2:5, 2:5] = 0
    image[4, 3:5, 3:5] = 0

    with expected_warnings(['operator.*deprecated|\A\Z']):
        new_image = grey.black_tophat(image)
    footprint = ndi.generate_binary_structure(3,1)
    with expected_warnings(['operator.*deprecated|\A\Z']):
        image_expected = ndi.black_tophat(image,footprint=footprint)
    testing.assert_array_equal(new_image, image_expected)
开发者ID:AbdealiJK,项目名称:scikit-image,代码行数:12,代码来源:test_grey.py

示例12: test_warp_clip

def test_warp_clip():
    x = np.zeros((5, 5), dtype=np.double)
    x[2, 2] = 1

    with expected_warnings(['The default mode', 'The default multichannel']):
        outx = rescale(x, 3, order=3, clip=False)
    assert outx.min() < 0

    with expected_warnings(['The default mode', 'The default multichannel']):
        outx = rescale(x, 3, order=3, clip=True)
    assert_almost_equal(outx.min(), 0)
    assert_almost_equal(outx.max(), 1)
开发者ID:andreydung,项目名称:scikit-image,代码行数:12,代码来源:test_warps.py

示例13: test_spacing_1

def test_spacing_1():
    n = 30
    lx, ly, lz = n, n, n
    data, _ = make_3d_syntheticdata(lx, ly, lz)

    # Rescale `data` along Y axis
    # `resize` is not yet 3D capable, so this must be done by looping in 2D.
    data_aniso = np.zeros((n, n * 2, n))
    for i, yz in enumerate(data):
        data_aniso[i, :, :] = resize(yz, (n * 2, n),
                                     mode='constant',
                                     anti_aliasing=False)

    # Generate new labels
    small_l = int(lx // 5)
    labels_aniso = np.zeros_like(data_aniso)
    labels_aniso[lx // 5, ly // 5, lz // 5] = 1
    labels_aniso[lx // 2 + small_l // 4,
                 ly - small_l // 2,
                 lz // 2 - small_l // 4] = 2

    # Test with `spacing` kwarg
    # First, anisotropic along Y
    with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
                            NUMPY_MATRIX_WARNING]):
        labels_aniso = random_walker(data_aniso, labels_aniso, mode='cg',
                                     spacing=(1., 2., 1.))
    assert (labels_aniso[13:17, 26:34, 13:17] == 2).all()

    # Rescale `data` along X axis
    # `resize` is not yet 3D capable, so this must be done by looping in 2D.
    data_aniso = np.zeros((n, n * 2, n))
    for i in range(data.shape[1]):
        data_aniso[i, :, :] = resize(data[:, 1, :], (n * 2, n),
                                     mode='constant',
                                     anti_aliasing=False)

    # Generate new labels
    small_l = int(lx // 5)
    labels_aniso2 = np.zeros_like(data_aniso)
    labels_aniso2[lx // 5, ly // 5, lz // 5] = 1
    labels_aniso2[lx - small_l // 2,
                  ly // 2 + small_l // 4,
                  lz // 2 - small_l // 4] = 2

    # Anisotropic along X
    with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
                            NUMPY_MATRIX_WARNING]):
        labels_aniso2 = random_walker(data_aniso,
                                      labels_aniso2,
                                      mode='cg', spacing=(2., 1., 1.))
    assert (labels_aniso2[26:34, 13:17, 13:17] == 2).all()
开发者ID:anntzer,项目名称:scikit-image,代码行数:52,代码来源:test_random_walker.py

示例14: test_multispectral_2d

def test_multispectral_2d():
    lx, ly = 70, 100
    data, labels = make_2d_syntheticdata(lx, ly)
    data = data[..., np.newaxis].repeat(2, axis=-1)  # Expect identical output
    with expected_warnings(['"cg" mode' + '|' + SCIPY_EXPECTED]):
        multi_labels = random_walker(data, labels, mode='cg',
                                     multichannel=True)
    assert data[..., 0].shape == labels.shape
    with expected_warnings(['"cg" mode' + '|' + SCIPY_EXPECTED]):
        single_labels = random_walker(data[..., 0], labels, mode='cg')
    assert (multi_labels.reshape(labels.shape)[25:45, 40:60] == 2).all()
    assert data[..., 0].shape == labels.shape
    return data, multi_labels, single_labels, labels
开发者ID:ameya005,项目名称:scikit-image,代码行数:13,代码来源:test_random_walker.py

示例15: test_3d_fallback_white_tophat

def test_3d_fallback_white_tophat():
    image = np.zeros((7, 7, 7), dtype=bool)
    image[2, 2:4, 2:4] = 1
    image[3, 2:5, 2:5] = 1
    image[4, 3:5, 3:5] = 1

    with expected_warnings([r'operator.*deprecated|\A\Z']):
        new_image = grey.white_tophat(image)
    footprint = ndi.generate_binary_structure(3, 1)
    with expected_warnings([r'operator.*deprecated|\A\Z']):
        image_expected = ndi.white_tophat(
            image.view(dtype=np.uint8), footprint=footprint)
    assert_array_equal(new_image, image_expected)
开发者ID:TheArindham,项目名称:scikit-image,代码行数:13,代码来源:test_grey.py


注:本文中的skimage._shared._warnings.expected_warnings函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。