当前位置: 首页>>代码示例>>Python>>正文


Python skimage.img_as_float函数代码示例

本文整理汇总了Python中skimage.img_as_float函数的典型用法代码示例。如果您正苦于以下问题:Python img_as_float函数的具体用法?Python img_as_float怎么用?Python img_as_float使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了img_as_float函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: mpl_image_to_rgba

def mpl_image_to_rgba(mpl_image):
    """Return RGB image from the given matplotlib image object.

    Each image in a matplotlib figure has its own colormap and normalization
    function. Return RGBA (RGB + alpha channel) image with float dtype.

    Parameters
    ----------
    mpl_image : matplotlib.image.AxesImage object
        The image being converted.

    Returns
    -------
    img : array of float, shape (M, N, 4)
        An image of float values in [0, 1].
    """
    image = mpl_image.get_array()
    if image.ndim == 2:
        input_range = (mpl_image.norm.vmin, mpl_image.norm.vmax)
        image = rescale_intensity(image, in_range=input_range)
        # cmap complains on bool arrays
        image = mpl_image.cmap(img_as_float(image))
    elif image.ndim == 3 and image.shape[2] == 3:
        # add alpha channel if it's missing
        image = np.dstack((image, np.ones_like(image)))
    return img_as_float(image)
开发者ID:almarklein,项目名称:scikit-image,代码行数:26,代码来源:core.py

示例2: crop_image

def crop_image(x, target_height=227, target_width=227):

    if isinstance(x, str):
        image = skimage.img_as_float(skimage.io.imread(x)).astype(np.float32)
    else:
        image = skimage.img_as_float(x).astype(np.float32)

    if len(image.shape) == 2:
        image = np.tile(image[:,:,None], 3)
    elif len(image.shape) == 4:
        image = image[:,:,:,0]

    height, width, rgb = image.shape
    if width == height:
        resized_image = cv2.resize(image, (target_height,target_width))

    elif height < width:
        resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_width))
        cropping_length = int((resized_image.shape[1] - target_height) / 2)
        resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length]

    else:
        resized_image = cv2.resize(image, (target_height, int(height * float(target_width) / width)))
        cropping_length = int((resized_image.shape[0] - target_width) / 2)
        resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:]

    return cv2.resize(resized_image, (target_height, target_width))
开发者ID:jazzsaxmafia,项目名称:video_recognition,代码行数:27,代码来源:cnn_util.py

示例3: __init__

    def __init__(self, headers, lightfield_name, darkfield_name):
        """
        Load images from a detector for given Header(s). Subtract
        dark images from each corresponding light image automatically.

        Parameters
        ----------
        headers : Header or list of Headers
        lightfield_name : str
            alias (data key) of lightfield images
        darkfield_name : str
            alias (data key) of darkfield images

        Example
        -------
        >>> header = DataBroker[-1]
        >>> images = SubtractedImages(header, 'my_lightfield', 'my_darkfield')
        >>> for image in images:
                # do something
        """
        self.light = Images(headers, lightfield_name)
        self.dark = Images(headers, darkfield_name)
        if len(self.light) != len(self.dark):
            raise ValueError("The streams from {0} and {1} have unequal "
                             "length and cannot be automatically subtracted.")
        self._len = len(self.light)
        example = img_as_float(self.light[0]) - img_as_float(self.dark[0])
        self._dtype = example.dtype
        self._shape = example.shape
开发者ID:giltis,项目名称:dataportal,代码行数:29,代码来源:pims_readers.py

示例4: transform_image

def transform_image(image, params=[], tags=[]):
    image = apply_tags(image, tags)
    image = extract_roi(image, params)
    for k,v in params:
        if k=='saturation':
            saturation = float(v)
            image = scale_saturation(image, saturation)
        elif k=='gamma':
            gamma = float(v)
            image = np.power(img_as_float(image), gamma)
        elif k=='brightness':
            b = float(v)
            image = (img_as_float(image) * b).clip(0.,1.)
        elif k=='width':
            scale = float(v) / image.shape[1]
            image = rescale(image, scale)
        elif k=='maxwidth':
            w = float(v)
            if image.shape[1] > w:
                scale = w / image.shape[1]
                image = rescale(image, scale)
        elif k=='height':
            scale = float(v) / image.shape[0]
            image = rescale(image, scale)
        elif k=='maxheight':
            h = float(v)
            if image.shape[0] > h:
                scale = h / image.shape[0]
                image = rescale(image, scale)
    return image
开发者ID:joefutrelle,项目名称:habcam-image-service,代码行数:30,代码来源:transform.py

示例5: repeated_sales

def repeated_sales(df, artistname, artname, r2thresh=7000, fftr2thresh=10000, IMAGES_DIR='/home/ryan/asi_images/'):
    """
        Takes a dataframe, artistname and artname and tries to decide, via image matching, if there is a repeat sale. Returns a dict of lot_ids, each entry a list of repeat sales
    """
    artdf = df[(df['artistID']==artistname) & (df['artTitle']==artname)]

    artdf.images = artdf.images.apply(getpath)
    paths = artdf[['_id','images']].dropna()
    id_dict = {}
    img_buffer = {}
    already_ordered = []
    for i, path_i in paths.values:
        id_dict[i] = []
        img_buffer[i] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + path_i), (300,300))))
        for j, path_j in paths[paths._id != i].values:
            if j > i and j not in already_ordered:
                if j not in img_buffer.keys():
                    img_buffer[j] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + path_j), (300,300))))
                if norm(img_buffer[i] - img_buffer[j]) < r2thresh and\
                        norm(fft2(img_buffer[i]) - fft2(img_buffer[j])) < fftr2thresh:
                    id_dict[i].append(j)
                    already_ordered.append(j)
    for key in id_dict.keys():
        if id_dict[key] == []:
            id_dict.pop(key)
    return id_dict
开发者ID:rhsimplex,项目名称:artsift,代码行数:26,代码来源:art_utils.py

示例6: main

def main():
    img = imread('givenImg.png')
    img = img_as_float(img)
    subplot(1, 3, 1)
    imshow(imread('givenImg.png'))
    title('Given')
    figure()
    gray()
    """
    >>>img = imread('givenImg.png')
    >>>img = img_as_float(img)
    >>>energy=dual_gradient_energy(img)
    >>>minval,minIndex,sOfIJ=find_seam(img,energy)
    >>>print minval
    0.488050766739
    """
    for i in range(50): #Plot 50 Seams
        energy = dual_gradient_energy(img)
        minval, minIndex, sOfIJ = find_seam(img, energy)
        img = plot_seam(img, minIndex, sOfIJ)
    subplot(1, 3, 2)
    imshow(img)
    title('Seam Plot')
    img = imread('givenImg.png')
    img = img_as_float(img)
    for i in range(50): #Delete 50 Seams
        energy = dual_gradient_energy(img)
        minval, minIndex, sOfIJ = find_seam(img, energy)
        print minval
        img = remove_seam(img, minIndex, sOfIJ)
    subplot(1, 3, 3)
    imshow(img)
    title('Resized Image')
    show()
    pass
开发者ID:mpatward,项目名称:Seam-Carving-Algorithm,代码行数:35,代码来源:seamcarver.py

示例7: readTrainingFragment

def readTrainingFragment(datapath, fragList, imgSize=(1,224,224), meanImage=[], classNum=10):
    ch, ih, iw = imgSize
    fragLen = len(fragList)
    if ch == 1:
        X = np.zeros((fragLen, 1, ih, iw))
        Y = np.zeros((fragLen), dtype=int)
        idx = -1
        print('reading data')
        for f in fragList:
            idx += 1
            # print(f)
            label = np.int(f[0])
            img = skimage.img_as_float(skio.imread(datapath+f) )
#            img -= meanImage
            X[idx, 0, ...] = img
            Y[idx] = label
    elif ch == 3:
        X = np.zeros((fragLen, 3, ih, iw))
        Y = np.zeros((fragLen), dtype=int)
        idx = -1
        print('reading data')
        for f in fragList:
            idx += 1
            label = np.int(f[0])
            img = skimage.img_as_float(skio.imread(datapath+f) )
            img = img.swapaxes(1, 2)
            img = img.swapaxes(0, 1)
#            img -= meanImage
            X[idx, ...] = img
            Y[idx] = label
    X -= np.tile(meanImage, [fragLen, 1, 1, 1])
    Y = np_utils.to_categorical(Y, classNum)
    return X, Y
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:33,代码来源:DataReader_KERAS.py

示例8: readTestingFragment

def readTestingFragment(datapath, fragList, imgSize=(1,224,224), meanImage=[]):
    ch, ih, iw = imgSize
    fragLen = len(fragList)
    if ch == 1:
        X = np.zeros((fragLen, 1, ih, iw))
        idx = -1
        print('reading data')
        for f in fragList:
            idx += 1
            # print(f)
            img = skimage.img_as_float(skio.imread(datapath+f) )
#            img -= meanImage
            X[idx, 0, ...] = img
    elif ch == 3:
        X = np.zeros((fragLen, 3, ih, iw))
        idx = -1
        print('reading data')
        for f in fragList:
            idx += 1
            img = skimage.img_as_float(skio.imread(datapath+f) )
            img = img.swapaxes(1, 2)
            img = img.swapaxes(0, 1)
#            img -= meanImage
            X[idx, ...] = img
    X -= np.tile(meanImage, [fragLen, 1, 1, 1])
    return X
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:26,代码来源:DataReader_KERAS.py

示例9: find_movement

def find_movement():
    # img = imread('shot1.jpg')
    # img2 = imread('shot2.jpg')
    img = imread("frame0.jpg")
    img2 = imread("frame2.jpg")
    img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
    img1 = img_as_float(img1)
    img2 = img_as_float(img2)
    # print img1
    h1, w1 = img1.shape
    h2, w2 = img2.shape

    img3 = zeros((h1, w1))

    for x in range(0, h1 - 1):
        for y in range(0, w1 - 1):
            if abs(img1[x, y] - img2[x, y]) > 0.01:
                # print img1[x, y], " ", img2[x, y]
                img3[x, y] = 1

    figure()
    # subplot(1, 2, 1), imshow(img)
    # subplot(1, 2, 2), \
    imshow(img3)
    show()
开发者ID:bks2009,项目名称:ImageDeepLearning,代码行数:26,代码来源:Subtraction.py

示例10: computeMeanImage

def computeMeanImage(trainingPath, testingPath, savePath, imgSize):
    ch, ih, iw = imgSize
    meanImage = np.zeros((ch, ih, iw))
    print('computing mean image')
    folder = os.listdir(trainingPath)
    trainNum = 0
    for f in folder:
        if not f[-4:] == '.jpg':
            continue
        img = skimage.img_as_float( skio.imread(trainingPath+f) )
        trainNum += 1
        if ch == 3:
            img = img.swapaxes(1, 2)
            img = img.swapaxes(0, 1)
        meanImage += img
    
    folder = os.listdir(testingPath)
    testNum = 0
    for f in folder:
        if not f[-4:] == '.jpg':
            continue
        img = skimage.img_as_float( skio.imread(testingPath+f) )
        testNum += 1
        if ch == 3:
            img = img.swapaxes(1, 2)
            img = img.swapaxes(0, 1)
        meanImage += img
    meanImage /= (trainNum + testNum)
    with open(savePath, 'wb') as f:
        np.save(f, meanImage)
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:30,代码来源:DataReader_KERAS.py

示例11: compute_mean_image

def compute_mean_image(training_data_path, testing_data_path, save_flag=True, save_file=''):
    print('computing mean images')
    folder = os.listdir(training_data_path)
    trainNum = len(folder)
    init_flag = True
    for f in folder:
        img = skimage.img_as_float( skio.imread(training_data_path+f) )
        if init_flag:
            mean_image = img
            init_flag = False
        else:
            mean_image += img
    
    folder = os.listdir(testing_data_path)
    testNum = len(folder)
    for f in folder:
        img = skimage.img_as_float( skio.imread(testing_data_path+f) )
        mean_image += img
    
    mean_image /= (trainNum + testNum)
    
    
    if len(mean_image.shape) == 2:
        '''if gray, (h, w) to (1, h, w)'''
        tmp = np.zeros((1, mean_image.shape[0], mean_image.shape[1]))
        tmp[0, ...] = mean_image
        mean_image = tmp
    else:
        '''if color, swap (h, w, ch) to (ch, h, w)'''
        mean_image = mean_image.swapaxes(1,2)
        mean_image = mean_image.swapaxes(0,1)
    if save_flag:
        with open(save_file, 'wb') as f:
            np.save(f, mean_image)
    return mean_image
开发者ID:fucusy,项目名称:kaggle-state-farm-distracted-driver-detection,代码行数:35,代码来源:data_tools.py

示例12: image_compare

def image_compare(df, IMAGES_DIR='/home/ryan/asi_images/'):
    '''
    takes a list of n image ids and returns sum(n..n-1) n comparisons of r2 difference, r2(fft) difference, and average number of thresholded pixels
    '''
    img_buffer = {}
    return_list = []
    artdf = df[['_id', 'images']].copy()
    artdf.images = artdf.images.apply(getpath) 
    paths = artdf[['_id','images']].dropna()
    paths.index = paths._id
    paths = paths.images
    if paths.shape[0] < 2:
        return DataFrame([])
    for id_pair in combinations(paths.index, 2):
        if id_pair[0] in img_buffer:
            img1 = img_buffer[id_pair[0]]
        else:
            img_buffer[id_pair[0]] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + paths[id_pair[0]]), (300,300))))
            img1 = img_buffer[id_pair[0]]
        
        if id_pair[1] in img_buffer:
            img2 = img_buffer[id_pair[1]]
        else:
            img_buffer[id_pair[1]] = img_as_float(rgb2gray(resize(imread(IMAGES_DIR + paths[id_pair[1]]), (300,300))))
            img2 = img_buffer[id_pair[1]]
        return_list.append(
                [id_pair[0], id_pair[1], \
                    norm(img1 - img2), \
                    norm(fft2(img1) - fft2(img2)), \
                    #mean([sum(img1 > threshold_otsu(img1)), sum(img2 > threshold_otsu(img2))])]
                    #mean([sum(img1 > 0.9), sum(img2 > 0.9)])] 
                    std(img1)+std(img2)/2.]
       )
    return DataFrame(return_list, columns=['id1','id2','r2diff', 'fftdiff', 'stdavg'])
开发者ID:rhsimplex,项目名称:artsift,代码行数:34,代码来源:art_utils.py

示例13: main

def main():
    img = img_as_float(imread("HJoceanSmall.png"))
    img_seam_v = img_as_float(imread("HJoceanSmall.png"))
    img_transformed_v = img_as_float(imread("HJoceanSmall.png"))
    iterations = 20
    img_seam_v, img_transformed_v = seam_carve(iterations, img_seam_v, img_transformed_v)

    figure()

    subplot(221)
    imshow(img)
    title("1. Original")

    subplot(222)
    imshow(img_seam_v)
    title("2. Seam carved vertical")

    # Transposed Image

    img_seam_hv = img_transformed_v.transpose(1, 0, 2)
    img_transformed_hv = img_transformed_v.transpose(1, 0, 2)
    iterations = 20

    img_seam_hv, img_transformed_hv = seam_carve(iterations, img_seam_hv, img_transformed_hv)

    subplot(223)
    imshow(img_seam_hv.transpose(1, 0, 2))
    title("3. Seam carved horizontal")

    subplot(224)
    imshow(img_transformed_hv.transpose(1, 0, 2))
    title("4. Transformed Image")

    show()
开发者ID:srikiranpanchavati,项目名称:DataStructures,代码行数:34,代码来源:seamcarver.py

示例14: test_copy

def test_copy():
    x = np.array([1], dtype=np.float64)
    y = img_as_float(x)
    z = img_as_float(x, force_copy=True)

    assert y is x
    assert z is not x
开发者ID:GerardoLopez,项目名称:scikits-image,代码行数:7,代码来源:test_dtype.py

示例15: main

def main(image):

    matplotlib.rcParams["font.size"] = 10

    def show_img(img, axes):
        """Plot the image as float"""
        # img = img_as_float(img)
        ax_img = axes
        ax_img.imshow(img, cmap=plt.cm.gray)
        ax_img.set_axis_off()

        return ax_img

    # Open and read in the fits image
    try:
        fits = pyfits.open(image)
        # fits = Image.open(image)
    except IOError:
        print "Can not read the fits image: " + image + " !!"

    # Check the input image
    img = fits[0].data
    # img = np.array(fits)
    if img.ndim != 2:
        raise NameError("Data need to be 2-D image !")

    # Logrithm scaling of the image
    img_log = np.log10(img)
    img_log = img_as_float(img_log)

    # Contrast streching
    p5, p95 = np.percentile(img, (2, 98))
    img_rescale = exposure.rescale_intensity(img, in_range=(p5, p95))

    # Adaptive equalization
    img_new = bytescale(img_rescale)
    img_ahe = exposure.equalize_adapthist(img_new, ntiles_x=16, ntiles_y=16, clip_limit=0.05, nbins=256)
    img_ahe = img_as_float(img_ahe)

    # Display results
    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(16, 5))

    # Original image
    ax_img = show_img(img_log, axes[0])
    ax_img.set_title("Original")

    # Contrast Enhanced one
    ax_img = show_img(img_rescale, axes[1])
    ax_img.set_title("Rescale")

    # AHE Enhanced one
    ax_img = show_img(img_ahe, axes[2])
    ax_img.set_title("AHE")

    # Prevent overlap of y-axis
    fig.subplots_adjust(bottom=0.1, right=0.9, top=0.9, left=0.1, wspace=0.05)

    # Save a PNG file
    plt.gcf().savefig("ahe_test.png")
开发者ID:dr-guangtou,项目名称:hs_python,代码行数:59,代码来源:hs_local_ahe.py


注:本文中的skimage.img_as_float函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。