当前位置: 首页>>代码示例>>Python>>正文


Python TreeNode.rank方法代码示例

本文整理汇总了Python中skbio.tree.TreeNode.rank方法的典型用法代码示例。如果您正苦于以下问题:Python TreeNode.rank方法的具体用法?Python TreeNode.rank怎么用?Python TreeNode.rank使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在skbio.tree.TreeNode的用法示例。


在下文中一共展示了TreeNode.rank方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: unifrac

# 需要导入模块: from skbio.tree import TreeNode [as 别名]
# 或者: from skbio.tree.TreeNode import rank [as 别名]
    def unifrac(self, weighted=True, rank="auto"):
        """A beta diversity metric that takes into account the relative relatedness of community
        members. Weighted UniFrac looks at abundances, unweighted UniFrac looks at presence.

        Parameters
        ----------
        weighted : `bool`
            Calculate the weighted (True) or unweighted (False) distance metric.
        rank : {'auto', 'kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'}, optional
            Analysis will be restricted to abundances of taxa at the specified level.

        Returns
        -------
        skbio.stats.distance.DistanceMatrix, a distance matrix.
        """
        # needs read counts, not relative abundances
        if self._guess_normalized():
            raise OneCodexException("UniFrac requires unnormalized read counts.")

        df = self.to_df(rank=rank, normalize=False)

        counts = []
        for c_id in df.index:
            counts.append(df.loc[c_id].tolist())

        tax_ids = df.keys().tolist()

        tree = self.tree_build()
        tree = self.tree_prune_rank(tree, rank=df.ocx_rank)

        # there's a bug (?) in skbio where it expects the root to only have
        # one child, so we do a little faking here
        from skbio.tree import TreeNode

        new_tree = TreeNode(name="fake root")
        new_tree.rank = "no rank"
        new_tree.append(tree)

        # then finally run the calculation and return
        if weighted:
            return skbio.diversity.beta_diversity(
                "weighted_unifrac", counts, df.index.tolist(), tree=new_tree, otu_ids=tax_ids
            )
        else:
            return skbio.diversity.beta_diversity(
                "unweighted_unifrac", counts, df.index.tolist(), tree=new_tree, otu_ids=tax_ids
            )
开发者ID:onecodex,项目名称:onecodex,代码行数:49,代码来源:distance.py

示例2: tree_build

# 需要导入模块: from skbio.tree import TreeNode [as 别名]
# 或者: from skbio.tree.TreeNode import rank [as 别名]
    def tree_build(self):
        """Build a tree from the taxonomy data present in this `ClassificationsDataFrame` or
        `SampleCollection`.

        Returns
        -------
        `skbio.tree.TreeNode`, the root node of a tree that contains all the taxa in the current
        analysis and their parents leading back to the root node.
        """
        from skbio.tree import TreeNode

        # build all the nodes
        nodes = {}

        for tax_id in self.taxonomy.index:
            node = TreeNode(name=tax_id, length=1)
            node.tax_name = self.taxonomy["name"][tax_id]
            node.rank = self.taxonomy["rank"][tax_id]
            node.parent_tax_id = self.taxonomy["parent_tax_id"][tax_id]

            nodes[tax_id] = node

        # generate all the links
        for tax_id in self.taxonomy.index:
            try:
                parent = nodes[nodes[tax_id].parent_tax_id]
            except KeyError:
                if tax_id != "1":
                    warnings.warn(
                        "tax_id={} has parent_tax_id={} which is not in tree"
                        "".format(tax_id, nodes[tax_id].parent_tax_id)
                    )

                continue

            parent.append(nodes[tax_id])

        return nodes["1"]
开发者ID:onecodex,项目名称:onecodex,代码行数:40,代码来源:taxonomy.py


注:本文中的skbio.tree.TreeNode.rank方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。